Chinese ink-facilitated fabrication of paper-based composites as electrodes for supercapacitors

Commercial Chinese ink was employed to disperse pristine vapor-grown carbon nanofibers (VGCNFs) in aqueous suspensions via horizontal ball milling. The obtained suspension was used to fabricate conductive paper-based composites through filtration-deposition onto filter paper. It was found that the c...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan, Weili, Xiao, Zhuohao, Li, Xiuying, Wu, Xiang, Kong, Ling Bing
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/153727
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Commercial Chinese ink was employed to disperse pristine vapor-grown carbon nanofibers (VGCNFs) in aqueous suspensions via horizontal ball milling. The obtained suspension was used to fabricate conductive paper-based composites through filtration-deposition onto filter paper. It was found that the carbon black particles from the Chinese ink helped separate VGCNFs and acted as connection points between the VGCNFs, while the glue reinforced the conduction network. Thus, the VGCNF-ink/paper ternary composite showed sufficiently low sheet resistance. With merely 2.5 mg·cm⁻² VGCNFs, the sheet resistance could be reduced to 4.5 Ω·sq⁻¹. As a proof of concept, these paper-based composites were directly used as electrodes of solid-state symmetric electronic double-layer capacitors (EDLCs) and the substrate for the electrodeposition of MnO₂ to achieve higher electrochemical performances. The EDLCs fabricated with 2.5 mg·cm⁻² VGCNFs showed a specific capacitance of 224 mF·cm⁻² at a current density of 1 mA·cm⁻², which was retained by 86.4% after 10,000 charge-discharge cycles. Moreover, thanks to the high electrical conductivity and the porous structure, the MnO₂ decorated paper-based composites exhibited dramatically enhanced specific capacitance. It is believed that our finding offers an idea to directly utilize commercial Chinese ink for the fabrication of electrode materials.