Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning

Bi2Te3-based alloys are the best thermoelectric materials for near room temperature applications. However, its dimensionless figure of merit, ZT, has remained at a modest value of ~1 for the past 50 years. ZT is expected to increase in nanocomposite materials by maintaining a high power factor, but...

Full description

Saved in:
Bibliographic Details
Main Author: Fan, Shufen
Other Authors: Hng Huey Hoon
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/15381
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-15381
record_format dspace
spelling sg-ntu-dr.10356-153812023-03-04T15:39:00Z Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning Fan, Shufen Hng Huey Hoon School of Materials Science and Engineering Temasek Laboratories DRNTU::Engineering::Materials::Nanostructured materials DRNTU::Engineering::Materials::Energy materials DRNTU::Engineering::Materials::Defence materials DRNTU::Engineering::Materials::Composite materials Bi2Te3-based alloys are the best thermoelectric materials for near room temperature applications. However, its dimensionless figure of merit, ZT, has remained at a modest value of ~1 for the past 50 years. ZT is expected to increase in nanocomposite materials by maintaining a high power factor, but at the same time reducing the thermal conductivity. High throughput and extreme cooling rate makes melt spinning an attractive process for the synthesis of nanostructured materials. In this work, a series of p-type (Bi0.2Sb0.8)2Te3 nanocomposites with 0, 10, 20, 40 and 100 weight percent (wt%) melt spun inclusions were prepared through a combination of melt spinning and hot pressing processes and their thermoelectric properties evaluated. The nanocomposites generally exhibit lower electrical conductivity and higher Seebeck coefficient as compared to the bulk ingot. A peak power factor of ~4.0 x 10-3Wm-1K-2 was obtained in the 10wt% nanocomposite which is attributed to the slight decrease in electrical conductivity and drastic increase in Seebeck coefficient. A predicted ZT of ~0.9 at room temperature is obtained for the 10wt% nanocomposite using referenced thermal conductivity values of the bulk Bi2Te3 obtained from the literature. It was envisaged that the actual ZT of the nanocomposite would be higher as the thermal conductivity of nanocomposite materials has been shown in the literature to be lower than bulk materials. Bachelor of Engineering (Materials Engineering) 2009-04-28T02:30:34Z 2009-04-28T02:30:34Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/15381 en 50 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Nanostructured materials
DRNTU::Engineering::Materials::Energy materials
DRNTU::Engineering::Materials::Defence materials
DRNTU::Engineering::Materials::Composite materials
spellingShingle DRNTU::Engineering::Materials::Nanostructured materials
DRNTU::Engineering::Materials::Energy materials
DRNTU::Engineering::Materials::Defence materials
DRNTU::Engineering::Materials::Composite materials
Fan, Shufen
Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning
description Bi2Te3-based alloys are the best thermoelectric materials for near room temperature applications. However, its dimensionless figure of merit, ZT, has remained at a modest value of ~1 for the past 50 years. ZT is expected to increase in nanocomposite materials by maintaining a high power factor, but at the same time reducing the thermal conductivity. High throughput and extreme cooling rate makes melt spinning an attractive process for the synthesis of nanostructured materials. In this work, a series of p-type (Bi0.2Sb0.8)2Te3 nanocomposites with 0, 10, 20, 40 and 100 weight percent (wt%) melt spun inclusions were prepared through a combination of melt spinning and hot pressing processes and their thermoelectric properties evaluated. The nanocomposites generally exhibit lower electrical conductivity and higher Seebeck coefficient as compared to the bulk ingot. A peak power factor of ~4.0 x 10-3Wm-1K-2 was obtained in the 10wt% nanocomposite which is attributed to the slight decrease in electrical conductivity and drastic increase in Seebeck coefficient. A predicted ZT of ~0.9 at room temperature is obtained for the 10wt% nanocomposite using referenced thermal conductivity values of the bulk Bi2Te3 obtained from the literature. It was envisaged that the actual ZT of the nanocomposite would be higher as the thermal conductivity of nanocomposite materials has been shown in the literature to be lower than bulk materials.
author2 Hng Huey Hoon
author_facet Hng Huey Hoon
Fan, Shufen
format Final Year Project
author Fan, Shufen
author_sort Fan, Shufen
title Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning
title_short Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning
title_full Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning
title_fullStr Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning
title_full_unstemmed Synthesis and characterization of (Bi0.2Sb0.8)2Te3 thermoelectric nanocomposites via melt spinning
title_sort synthesis and characterization of (bi0.2sb0.8)2te3 thermoelectric nanocomposites via melt spinning
publishDate 2009
url http://hdl.handle.net/10356/15381
_version_ 1759856578236776448