New materials for solar cells

This project report documents on the chemical synthesis and characterization of organic compounds to ascertain its use as electron donor materials in hybrid organic-inorganic solar cells. The chemical synthesis entails the Knoevenagel condensation reactions between the compounds; 3,6-diformyl-9-n-do...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Kah Heng.
Other Authors: Andrew Clive Grimsdale
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/15382
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-15382
record_format dspace
spelling sg-ntu-dr.10356-153822023-03-04T15:34:55Z New materials for solar cells Tan, Kah Heng. Andrew Clive Grimsdale School of Materials Science and Engineering DRNTU::Engineering::Materials::Organic/Polymer electronics This project report documents on the chemical synthesis and characterization of organic compounds to ascertain its use as electron donor materials in hybrid organic-inorganic solar cells. The chemical synthesis entails the Knoevenagel condensation reactions between the compounds; 3,6-diformyl-9-n-dodeylcarbazole and several other differently substituted acetonitrile derivatives. These compounds are as follows; 3,4-dimethoxy-phenylacetonitrile, 4-methoxy-phenylacetonitrile, 5-methoxy3iodo-phenylacetonitrile and 2-thiopheneacetonitrile. All the final compounds obtained were characterized by nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy and also Ultraviolet- Visible (UV-Vis) spectroscopy. The band gap energy and respective absorbance wavelength can be estimated from the UV-Vis spectra. This will help to identify the criteria for successful application of the obtained materials for the purpose of hybrid solar cells, and enable the predicting of how various substituted functional groups has effects on the regions or peaks of absorption. This will aid in molecular design which entails creating better materials to match CdSe nanoparticles so as to maximize absorbance from the solar spectrum as much as possible in a complementary manner. From the NMR spectroscopy, promising results are present, suggesting that compound 11 has been obtained through the chemical reaction. Besides, the use of UV-Vis spectroscopy has also enabled deductions with regards to the effects of various functional groups on the absorbance and band gap energies. In general, the presence of electron-withdrawing groups tend to redshift the absorbance wavelength of the material and reduce the band gap energy as seen in compound 12 which has the most withdrawing groups (i.e. meta methoxy and Iodo) while the opposite holds true for electron-donating functional groups as seen in compound 10 (i.e. Para methoxy). Bachelor of Engineering (Materials Engineering) 2009-04-28T02:32:27Z 2009-04-28T02:32:27Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/15382 en Nanyang Technological University 40 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Organic/Polymer electronics
spellingShingle DRNTU::Engineering::Materials::Organic/Polymer electronics
Tan, Kah Heng.
New materials for solar cells
description This project report documents on the chemical synthesis and characterization of organic compounds to ascertain its use as electron donor materials in hybrid organic-inorganic solar cells. The chemical synthesis entails the Knoevenagel condensation reactions between the compounds; 3,6-diformyl-9-n-dodeylcarbazole and several other differently substituted acetonitrile derivatives. These compounds are as follows; 3,4-dimethoxy-phenylacetonitrile, 4-methoxy-phenylacetonitrile, 5-methoxy3iodo-phenylacetonitrile and 2-thiopheneacetonitrile. All the final compounds obtained were characterized by nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy and also Ultraviolet- Visible (UV-Vis) spectroscopy. The band gap energy and respective absorbance wavelength can be estimated from the UV-Vis spectra. This will help to identify the criteria for successful application of the obtained materials for the purpose of hybrid solar cells, and enable the predicting of how various substituted functional groups has effects on the regions or peaks of absorption. This will aid in molecular design which entails creating better materials to match CdSe nanoparticles so as to maximize absorbance from the solar spectrum as much as possible in a complementary manner. From the NMR spectroscopy, promising results are present, suggesting that compound 11 has been obtained through the chemical reaction. Besides, the use of UV-Vis spectroscopy has also enabled deductions with regards to the effects of various functional groups on the absorbance and band gap energies. In general, the presence of electron-withdrawing groups tend to redshift the absorbance wavelength of the material and reduce the band gap energy as seen in compound 12 which has the most withdrawing groups (i.e. meta methoxy and Iodo) while the opposite holds true for electron-donating functional groups as seen in compound 10 (i.e. Para methoxy).
author2 Andrew Clive Grimsdale
author_facet Andrew Clive Grimsdale
Tan, Kah Heng.
format Final Year Project
author Tan, Kah Heng.
author_sort Tan, Kah Heng.
title New materials for solar cells
title_short New materials for solar cells
title_full New materials for solar cells
title_fullStr New materials for solar cells
title_full_unstemmed New materials for solar cells
title_sort new materials for solar cells
publishDate 2009
url http://hdl.handle.net/10356/15382
_version_ 1759856242970329088