OnionNet-2: a convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells
One key task in virtual screening is to accurately predict the binding affinity (△G) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinary ability of DL to extract useful features from raw data. Nev...
Saved in:
Main Authors: | Wang, Zechen, Zheng, Liangzhen, Liu, Yang, Qu, Yuanyuan, Li, Yong-Qiang, Zhao, Mingwen, Mu, Yuguang, Li, Weifeng |
---|---|
其他作者: | School of Biological Sciences |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/154022 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Ligand binding induces agonistic-like conformational adaptations in helix 12 of progesterone receptor ligand binding domain
由: Zheng, Liangzhen, et al.
出版: (2019) -
Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction
由: Liu, Xiang, et al.
出版: (2022) -
Ligand capture by randomly distributed traps
由: Suphatra Adulrattananuwat
出版: (2009) -
Ligand capture by randomly distributed traps
由: Suphatra Adulrattananuwat
出版: (2002) -
Ligand reactivities in platinum and palladium chalcogen complexes
由: LI JINGQIU
出版: (2010)