Observation of photonic antichiral edge states

Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theorie...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhou, Peiheng, Liu, Gui-Geng, Yang, Yihao, Hu, Yuan-Hang, Ma, Sulin, Xue, Haoran, Wang, Qiang, Deng, Longjiang, Zhang, Baile
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/154133
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here, we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include tilted dispersion, chiral-like robust propagation in samples with certain shapes, and 100% scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.