Energy-efficient neural network inference with microcavity exciton polaritons

We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton-polaritons allows to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong o...

Full description

Saved in:
Bibliographic Details
Main Authors: Matuszewski. M., Opala, A., Mirek, R., Furman, M., Król, M., Tyszka, K., Liew, Timothy Chi Hin, Ballarini, D., Sanvitto, D., Szczytko, J., Piętka, B.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/154197
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-154197
record_format dspace
spelling sg-ntu-dr.10356-1541972023-02-28T20:00:41Z Energy-efficient neural network inference with microcavity exciton polaritons Matuszewski. M. Opala, A. Mirek, R. Furman, M. Król, M. Tyszka, K. Liew, Timothy Chi Hin Ballarini, D. Sanvitto, D. Szczytko, J. Piętka, B. School of Physical and Mathematical Sciences Science::Physics Artificial-Intelligence Classification We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton-polaritons allows to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts and interferometry or on polariton spin rotations. Ministry of Education (MOE) Published version M.M. acknowledges support from National Science Center, Poland Grant No. 2017/25/Z/ST3/03032 under the QuantERA program. A.O. acknowledges support from National Science Center, Poland Grant No. 2016/22/E/ ST3/00045. R.M. acknowledges support from National Science Center, Poland Grant No. 2019/33/N/ST3/02019. B.P. acknowldges support from National Science Center, Poland Grant No. 2020/37/B/ST3/01657. K.T. acknowldges support from National Science Center, Poland Grant No. 2020/04/X/ST7/01379. T.L. acknowledges the support of the Singapore Ministry of Education, via the Academic research fund project MOE2019-T2-1-004. D.B. and D.S. acknowledge support from the project FISR2020- COVID, WaveSense (FISR2020IP_04324), and the PRIN 2017 InPhoPOL. 2021-12-19T08:14:27Z 2021-12-19T08:14:27Z 2021 Journal Article Matuszewski. M., Opala, A., Mirek, R., Furman, M., Król, M., Tyszka, K., Liew, T. C. H., Ballarini, D., Sanvitto, D., Szczytko, J. & Piętka, B. (2021). Energy-efficient neural network inference with microcavity exciton polaritons. Physical Review Applied, 16(2), 024045-. https://dx.doi.org/10.1103/PhysRevApplied.16.024045 2331-7019 https://hdl.handle.net/10356/154197 10.1103/PhysRevApplied.16.024045 2-s2.0-85114415173 2 16 024045 en MOE2019-T2-1-004 Physical Review Applied © 2021 American Physical Society. All rights reserved. This paper was published in Physical Review Applied and is made available with permission of American Physical Society. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Physics
Artificial-Intelligence
Classification
spellingShingle Science::Physics
Artificial-Intelligence
Classification
Matuszewski. M.
Opala, A.
Mirek, R.
Furman, M.
Król, M.
Tyszka, K.
Liew, Timothy Chi Hin
Ballarini, D.
Sanvitto, D.
Szczytko, J.
Piętka, B.
Energy-efficient neural network inference with microcavity exciton polaritons
description We propose all-optical neural networks characterized by very high energy efficiency and performance density of inference. We argue that the use of microcavity exciton-polaritons allows to take advantage of the properties of both photons and electrons in a seamless manner. This results in strong optical nonlinearity without the use of optoelectronic conversion. We propose a design of a realistic neural network and estimate energy cost to be at the level of attojoules per bit, also when including the optoelectronic conversion at the input and output of the network, several orders of magnitude below state-of-the-art hardware implementations. We propose two kinds of nonlinear binarized nodes based either on optical phase shifts and interferometry or on polariton spin rotations.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Matuszewski. M.
Opala, A.
Mirek, R.
Furman, M.
Król, M.
Tyszka, K.
Liew, Timothy Chi Hin
Ballarini, D.
Sanvitto, D.
Szczytko, J.
Piętka, B.
format Article
author Matuszewski. M.
Opala, A.
Mirek, R.
Furman, M.
Król, M.
Tyszka, K.
Liew, Timothy Chi Hin
Ballarini, D.
Sanvitto, D.
Szczytko, J.
Piętka, B.
author_sort Matuszewski. M.
title Energy-efficient neural network inference with microcavity exciton polaritons
title_short Energy-efficient neural network inference with microcavity exciton polaritons
title_full Energy-efficient neural network inference with microcavity exciton polaritons
title_fullStr Energy-efficient neural network inference with microcavity exciton polaritons
title_full_unstemmed Energy-efficient neural network inference with microcavity exciton polaritons
title_sort energy-efficient neural network inference with microcavity exciton polaritons
publishDate 2021
url https://hdl.handle.net/10356/154197
_version_ 1759852997213421568