Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones
Rocks in cold regions tend to experience exacerbated degradation under the combined effects of environmental and anthropogenic factors, which may arise from, for example, temperature fluctuation, mechanical excavation, and blasting. Activities related to rock support or open-pit slope optimization i...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154266 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-154266 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1542662021-12-16T07:26:17Z Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones Wang, Fei Cao, Ping Wang, Yixian Hao, Ruiqing Meng, Jingling Shang, Junlong School of Civil and Environmental Engineering Nanyang Centre for Underground Space (NCUS) Engineering::Civil engineering Porous Sandstone Cyclic Load Rocks in cold regions tend to experience exacerbated degradation under the combined effects of environmental and anthropogenic factors, which may arise from, for example, temperature fluctuation, mechanical excavation, and blasting. Activities related to rock support or open-pit slope optimization in cold regions require a complete understanding of the failure mechanisms of rock under the complex conditions. This paper quantitatively documents the impact of combined cyclic mechanical load and freeze-thaw cycles (i.e., the effect of stress “history”) on the microstructural evolution and mechanical degradation of three porous sandstones with distinct porosity values (from 3.9 to 14.1%). The three sandstone samples were collected from different geological regions in China. The microstructural evolution of the tested samples was quantitatively analyzed using the low-field Nuclear Magnetic Resonance (NMR) technique. To investigate sample degradation arising from the impact of the stress “history”, the cyclic-loaded and freeze-thaw cycled samples were eventually compressed to failure, during which an acoustic emission system was used to monitor microseismic activities. The results of the study show that the porosity of all tested sandstone samples was increased after cyclic load, with a much more rapid and further increase in porosity observed for samples being subsequently treated under the freeze-thaw cycles. More interestingly, the Chuxiong sandstone with relatively small porosity values were much more sensitive to the impact of cyclic load compared with the Linyi sandstone, exhibiting a somewhat larger increase rate in porosity. However, the Linyi sandstone with larger initial porosity values exhibited a relatively large increase rate in porosity under the multiple freeze-thaw treatments. The multiple freeze-thaw treatments mainly resulted in the development of relatively large pores. The results of the uniaxial compression tests show that the strength reduction of the samples being solely treated by freeze-thaw cycles was within the range of 5–10%, whereas it was within the range of 20–40% for those samples subjected to the combined cyclic load and freeze-thaw cycles. This work is financially supported by the Research Funds for the Central Universities of China (award no. 2017zzts164) and the National Natural Science Foundation of China (award no. 11772358). 2021-12-16T07:26:17Z 2021-12-16T07:26:17Z 2020 Journal Article Wang, F., Cao, P., Wang, Y., Hao, R., Meng, J. & Shang, J. (2020). Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones. Engineering Geology, 266, 105466-. https://dx.doi.org/10.1016/j.enggeo.2019.105466 0013-7952 https://hdl.handle.net/10356/154266 10.1016/j.enggeo.2019.105466 2-s2.0-85077509391 266 105466 en Engineering Geology © 2019 Elsevier B.V. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Civil engineering Porous Sandstone Cyclic Load |
spellingShingle |
Engineering::Civil engineering Porous Sandstone Cyclic Load Wang, Fei Cao, Ping Wang, Yixian Hao, Ruiqing Meng, Jingling Shang, Junlong Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
description |
Rocks in cold regions tend to experience exacerbated degradation under the combined effects of environmental and anthropogenic factors, which may arise from, for example, temperature fluctuation, mechanical excavation, and blasting. Activities related to rock support or open-pit slope optimization in cold regions require a complete understanding of the failure mechanisms of rock under the complex conditions. This paper quantitatively documents the impact of combined cyclic mechanical load and freeze-thaw cycles (i.e., the effect of stress “history”) on the microstructural evolution and mechanical degradation of three porous sandstones with distinct porosity values (from 3.9 to 14.1%). The three sandstone samples were collected from different geological regions in China. The microstructural evolution of the tested samples was quantitatively analyzed using the low-field Nuclear Magnetic Resonance (NMR) technique. To investigate sample degradation arising from the impact of the stress “history”, the cyclic-loaded and freeze-thaw cycled samples were eventually compressed to failure, during which an acoustic emission system was used to monitor microseismic activities. The results of the study show that the porosity of all tested sandstone samples was increased after cyclic load, with a much more rapid and further increase in porosity observed for samples being subsequently treated under the freeze-thaw cycles. More interestingly, the Chuxiong sandstone with relatively small porosity values were much more sensitive to the impact of cyclic load compared with the Linyi sandstone, exhibiting a somewhat larger increase rate in porosity. However, the Linyi sandstone with larger initial porosity values exhibited a relatively large increase rate in porosity under the multiple freeze-thaw treatments. The multiple freeze-thaw treatments mainly resulted in the development of relatively large pores. The results of the uniaxial compression tests show that the strength reduction of the samples being solely treated by freeze-thaw cycles was within the range of 5–10%, whereas it was within the range of 20–40% for those samples subjected to the combined cyclic load and freeze-thaw cycles. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Wang, Fei Cao, Ping Wang, Yixian Hao, Ruiqing Meng, Jingling Shang, Junlong |
format |
Article |
author |
Wang, Fei Cao, Ping Wang, Yixian Hao, Ruiqing Meng, Jingling Shang, Junlong |
author_sort |
Wang, Fei |
title |
Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
title_short |
Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
title_full |
Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
title_fullStr |
Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
title_full_unstemmed |
Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
title_sort |
combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/154266 |
_version_ |
1720447139958489088 |