Post-processing of additively manufactured components
Additive manufacturing (AM) has been a great development in the manufacturing industry, opening many new possibilities for product developers and designers and a much bigger world for them to explore. R&D teams and designers were given many new opportunities to evolve their products and designs...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154343 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Additive manufacturing (AM) has been a great development in the manufacturing industry, opening many new possibilities for product developers and designers and a much bigger world for them to explore. R&D teams and designers were given many new opportunities to evolve their products and designs thanks to this technology, improving their performances and bring more aesthetics to life. Manufacturers could also cut down on production time, cost of production and manpower.
However, despite the multiple conveniences of AM technologies for metals, this range of technology does not negate the eventual need of two types of post-processing: surface finishing and support structure removal. Since AM technology allows for the fabrication of components designed in very complex shapes and profiles, it is inevitable that inaccessible areas of the components will have to be processed. Mechanical processing is not the ideal method for such post-processing as it cannot adapt to all types of profiles and runs the risk of damaging the products.
A ‘contactless’ post-processing method has to be developed such that it can polish all sorts of surfaces and remove support structures, regardless of component shape and profile, and runs a minimal risk of damaging the final products in the process.
A comparison of three post-processing methods will be shared, with the effects of each process assessed and described in detail. The pros and cons of each of the processes will be presented according to the analysis of the results. |
---|