An optimization framework of K-means clustering and metaheuristic for traveling salesman problem
In this dissertation, we first studied the optimization framework of K-means clustering genetic algorithm. By comparing with traditional genetic algorithm, we verified that the optimization framework can effectively save computing time when solving large-scale traveling salesman problems and the fin...
Saved in:
主要作者: | Wang, Benquan |
---|---|
其他作者: | Meng-Hiot Lim |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/154401 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Memetic framework with adaptive meme pool for the travelling salesman problem
由: Zeng, Yuntao
出版: (2023) -
Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems
由: Gupta, Shubham, et al.
出版: (2022) -
Efficient graph neural networks for travelling salesman problem using multilevel clustering
由: Dwivedee, Lakshyajeet
出版: (2021) -
Optimization of traveling salesman problem with Google app engine project report
由: Lin, Runhui.
出版: (2011) -
Comparative analysis of solving traveling salesman problem using artificial intelligence algorithms
由: Brucal, Stanley Glenn E., et al.
出版: (2017)