Encapsulating ruthenium in silica using a single source precursor : differing outcomes for a cycloaddition reaction
The complex [Ru2(CO)4(µ-O2CCH2OSi(OEt)3)2(PPh3)2] was used as a single-source precursor to prepare silica-encapsulated ruthenium via hydrolysis followed by calcination. While the silica-encapsulated ruthenium catalyst and the molecular precursor both catalysed the [2 + 1] cycloaddition reaction betw...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154504 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The complex [Ru2(CO)4(µ-O2CCH2OSi(OEt)3)2(PPh3)2] was used as a single-source precursor to prepare silica-encapsulated ruthenium via hydrolysis followed by calcination. While the silica-encapsulated ruthenium catalyst and the molecular precursor both catalysed the [2 + 1] cycloaddition reaction between alkenes and ethyl diazoacetate to form cyclopropanes, the intermediate hydrolysis product partially directed the reaction towards [2 + 3] cycloaddition to form cyclic five-membered pyrazolines. |
---|