Single-mode lasing based on PT-breaking of two-dimensional photonic higher-order topological insulator
Topological lasers are a new class of lasers that seek to exploit the special properties of topological states of light. A typical limiting factor in their performance is the existence of non-topological states with quality factors comparable to the desired topological states. We show theoretical...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154519 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Topological lasers are a new class of lasers that seek to exploit the special
properties of topological states of light. A typical limiting factor in their
performance is the existence of non-topological states with quality factors
comparable to the desired topological states. We show theoretically that by
distributing uniform gain and loss on two sublattices of a two-dimensional
higher-order topological insulator (HOTI) lattice, single-mode lasing based on
topological corner states can be sustained over a wide range of pump strengths.
This behavior stems from the parity/time-reversal breaking of the topological
corner states, which supplies them with more effective gain than the edge and
bulk states, rather than through localized pumping of the domain corners. These
results point to opportunities for exploiting non-Hermitian phenomena and
designing compact high performance topological lasers. |
---|