Solution processed nanostructures for solar cell applications

This report contains insights into the theory of Dye-Sensitized Solar Cells (DSSCs), encompassing its construction from zinc oxide (ZnO) nanostructures, Liquid Phase Deposited (LPD) processing and post Titanium (IV) Chloride (TiCl4) treatments, to experiments conducted to evaluate its effic...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Gerard Yung Kiat.
Other Authors: Goh Kia Liang Gregory
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/15460
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-15460
record_format dspace
spelling sg-ntu-dr.10356-154602023-03-04T15:41:02Z Solution processed nanostructures for solar cell applications Tan, Gerard Yung Kiat. Goh Kia Liang Gregory School of Materials Science and Engineering DRNTU::Engineering::Materials::Energy materials This report contains insights into the theory of Dye-Sensitized Solar Cells (DSSCs), encompassing its construction from zinc oxide (ZnO) nanostructures, Liquid Phase Deposited (LPD) processing and post Titanium (IV) Chloride (TiCl4) treatments, to experiments conducted to evaluate its efficiency and various properties. Important characterizations such as electron microscopy, X-ray diffraction and DSSC testing will be done across all the individual categories of experiments. The maximum length of zinc oxide nanowires grown using hydrothermal method of growth is 10.543 μm in a total of 24 hours, with 4 hour refresh cycles to continually provide growth precursors. The zinc oxide nanowires DSSCs performance has shown an approximate trending of decreasing efficiency over increasing amounts of dye loading time. The 3.6 μm length (a total of 8 hour growth cycle utilizing hydrothermal method of growth) ZnO nanowire has shown a decreasing efficiency of 0.22% to 0.014%, from 0.5 hours to 48 hours dye loading time. Also, the greatest reduction in efficiency occurs during the first 2 hours, and subsequently the efficiency arrests to a decreasing plateau. LPD-processing on ZnO nanostructures yielding amorphous TiO2 was carried out at 50°C, and there was a reduction in height from 5.94 μm to 4.73 μm with the average diameter of rods increasing dramatically to approximately 430 nm. DSSCs constructed utilizing LPD-processed ZnO nanostructures were dye-loaded in similar conditions and durations with the earlier ZnO experiment, and found to have increasing efficiencies over the same durations. The most remarkable jump in efficiency was during the first 2 hours, while increasing efficiency indicates more room for dye adsorption mechanism to take place. Lastly, the TiCl4 post-treatment of LPD-processed nanostructures and ZnO was carried out with no remarkable improvement in cell performance, albeit a single jump in Fill Factor value to 0.697. As the mechanisms of the hydrolysis of TiCl4 are not fully understood up to date, more areas remain for further improvement. Bachelor of Engineering (Materials Engineering) 2009-05-04T06:58:52Z 2009-05-04T06:58:52Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/15460 en Nanyang Technological University 48 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Energy materials
spellingShingle DRNTU::Engineering::Materials::Energy materials
Tan, Gerard Yung Kiat.
Solution processed nanostructures for solar cell applications
description This report contains insights into the theory of Dye-Sensitized Solar Cells (DSSCs), encompassing its construction from zinc oxide (ZnO) nanostructures, Liquid Phase Deposited (LPD) processing and post Titanium (IV) Chloride (TiCl4) treatments, to experiments conducted to evaluate its efficiency and various properties. Important characterizations such as electron microscopy, X-ray diffraction and DSSC testing will be done across all the individual categories of experiments. The maximum length of zinc oxide nanowires grown using hydrothermal method of growth is 10.543 μm in a total of 24 hours, with 4 hour refresh cycles to continually provide growth precursors. The zinc oxide nanowires DSSCs performance has shown an approximate trending of decreasing efficiency over increasing amounts of dye loading time. The 3.6 μm length (a total of 8 hour growth cycle utilizing hydrothermal method of growth) ZnO nanowire has shown a decreasing efficiency of 0.22% to 0.014%, from 0.5 hours to 48 hours dye loading time. Also, the greatest reduction in efficiency occurs during the first 2 hours, and subsequently the efficiency arrests to a decreasing plateau. LPD-processing on ZnO nanostructures yielding amorphous TiO2 was carried out at 50°C, and there was a reduction in height from 5.94 μm to 4.73 μm with the average diameter of rods increasing dramatically to approximately 430 nm. DSSCs constructed utilizing LPD-processed ZnO nanostructures were dye-loaded in similar conditions and durations with the earlier ZnO experiment, and found to have increasing efficiencies over the same durations. The most remarkable jump in efficiency was during the first 2 hours, while increasing efficiency indicates more room for dye adsorption mechanism to take place. Lastly, the TiCl4 post-treatment of LPD-processed nanostructures and ZnO was carried out with no remarkable improvement in cell performance, albeit a single jump in Fill Factor value to 0.697. As the mechanisms of the hydrolysis of TiCl4 are not fully understood up to date, more areas remain for further improvement.
author2 Goh Kia Liang Gregory
author_facet Goh Kia Liang Gregory
Tan, Gerard Yung Kiat.
format Final Year Project
author Tan, Gerard Yung Kiat.
author_sort Tan, Gerard Yung Kiat.
title Solution processed nanostructures for solar cell applications
title_short Solution processed nanostructures for solar cell applications
title_full Solution processed nanostructures for solar cell applications
title_fullStr Solution processed nanostructures for solar cell applications
title_full_unstemmed Solution processed nanostructures for solar cell applications
title_sort solution processed nanostructures for solar cell applications
publishDate 2009
url http://hdl.handle.net/10356/15460
_version_ 1759856808797667328