EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine
The COVID-19 pandemic has brought infectious diseases again to the forefront of global public health concerns. In this EML webinar (Gao, 2020), we discuss some recent work on simulation-assisted discovery of membrane targeting nanomedicine to counter increasing antimicrobial resistance and potential...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154656 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-154656 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1546562021-12-30T07:34:09Z EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine Zou, Guijin Liu, Yue Gao, Huajian School of Mechanical and Aerospace Engineering Engineering::Mechanical engineering Membrane Targeting Antibiotics The COVID-19 pandemic has brought infectious diseases again to the forefront of global public health concerns. In this EML webinar (Gao, 2020), we discuss some recent work on simulation-assisted discovery of membrane targeting nanomedicine to counter increasing antimicrobial resistance and potential application of similar ideas to the current pandemic. A recent report led by the world health organization (WHO) warned that 10 million people worldwide could die of bacterial infections each year by 2050. To avert the crisis, membrane targeting antibiotics are drawing increasing attention due to their intrinsic advantage of low resistance development. In collaboration with a number of experimental groups, we show examples of simulation-assisted discovery of molecular agents capable of selectively penetrating and aggregating in bacterial lipid membranes, causing membrane permeability/rupture. Through systematic all-atom molecular dynamics simulations and free energy analysis, we demonstrate that the membrane activity of the molecular agents correlates with their ability to enter, perturb and permeabilize the lipid bilayers. Further study on different cell membranes demonstrates that the selectivity results from the presence of cholesterol in mammalian but not in bacterial membranes, as the cholesterol can condense the hydrophobic region of membrane, preventing the penetration of the molecular agents. Following the molecular penetration, we establish a continuum theory and derive the energetic driving force for the domain aggregation and pore growth on lipid membrane. We show that the energy barrier to membrane pore formation can be significantly lowered through molecular aggregation on a large domain with intrinsic curvature and a sharp interface. The theory is consistent with experimental observations and validated with coarse-grained molecular dynamics simulations of molecular domain aggregation leading to pore formation in a lipid membrane. The mechanistic modelling and simulation provide some fundamental principles on how molecular antimicrobials interact with bacterial membranes and damage them through domain aggregation and pore formation. For treating viral infections and cancer therapy, we discuss potential size- and lipid-type-based selectivity principles for developing membrane active nanomedicine. These studies suggest a general simulation-assisted platform to accelerate discovery and innovation in nanomedicine against infectious diseases. EML Webinar speakers are updated at https://imechanica.org/node/24132. Agency for Science, Technology and Research (A*STAR) Nanyang Technological University This work was supported by the U.S. National Science Foundation (Grant CMMI-1562904) and a start-up grant from the Nanyang Technological University and Institute of High Performance Computing, A*STAR, Singapore. 2021-12-30T07:34:09Z 2021-12-30T07:34:09Z 2020 Journal Article Zou, G., Liu, Y. & Gao, H. (2020). EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine. Extreme Mechanics Letters, 39, 100817-. https://dx.doi.org/10.1016/j.eml.2020.100817 2352-4316 https://hdl.handle.net/10356/154656 10.1016/j.eml.2020.100817 32537481 2-s2.0-85086505301 39 100817 en Extreme Mechanics Letters © 2020 Elsevier Ltd. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering Membrane Targeting Antibiotics |
spellingShingle |
Engineering::Mechanical engineering Membrane Targeting Antibiotics Zou, Guijin Liu, Yue Gao, Huajian EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine |
description |
The COVID-19 pandemic has brought infectious diseases again to the forefront of global public health concerns. In this EML webinar (Gao, 2020), we discuss some recent work on simulation-assisted discovery of membrane targeting nanomedicine to counter increasing antimicrobial resistance and potential application of similar ideas to the current pandemic. A recent report led by the world health organization (WHO) warned that 10 million people worldwide could die of bacterial infections each year by 2050. To avert the crisis, membrane targeting antibiotics are drawing increasing attention due to their intrinsic advantage of low resistance development. In collaboration with a number of experimental groups, we show examples of simulation-assisted discovery of molecular agents capable of selectively penetrating and aggregating in bacterial lipid membranes, causing membrane permeability/rupture. Through systematic all-atom molecular dynamics simulations and free energy analysis, we demonstrate that the membrane activity of the molecular agents correlates with their ability to enter, perturb and permeabilize the lipid bilayers. Further study on different cell membranes demonstrates that the selectivity results from the presence of cholesterol in mammalian but not in bacterial membranes, as the cholesterol can condense the hydrophobic region of membrane, preventing the penetration of the molecular agents. Following the molecular penetration, we establish a continuum theory and derive the energetic driving force for the domain aggregation and pore growth on lipid membrane. We show that the energy barrier to membrane pore formation can be significantly lowered through molecular aggregation on a large domain with intrinsic curvature and a sharp interface. The theory is consistent with experimental observations and validated with coarse-grained molecular dynamics simulations of molecular domain aggregation leading to pore formation in a lipid membrane. The mechanistic modelling and simulation provide some fundamental principles on how molecular antimicrobials interact with bacterial membranes and damage them through domain aggregation and pore formation. For treating viral infections and cancer therapy, we discuss potential size- and lipid-type-based selectivity principles for developing membrane active nanomedicine. These studies suggest a general simulation-assisted platform to accelerate discovery and innovation in nanomedicine against infectious diseases. EML Webinar speakers are updated at https://imechanica.org/node/24132. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Zou, Guijin Liu, Yue Gao, Huajian |
format |
Article |
author |
Zou, Guijin Liu, Yue Gao, Huajian |
author_sort |
Zou, Guijin |
title |
EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine |
title_short |
EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine |
title_full |
EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine |
title_fullStr |
EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine |
title_full_unstemmed |
EML webinar overview : Simulation-assisted discovery of membrane targeting nanomedicine |
title_sort |
eml webinar overview : simulation-assisted discovery of membrane targeting nanomedicine |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/154656 |
_version_ |
1722355352051122176 |