A two-part mixed-effects model for analyzing clustered time-to-event data with clumping at zero

In longitudinal epidemiological studies consisting of a baseline stage and a follow-up stage, observations at the baseline stage may contain a countable proportion of negative responses. The time-to-event outcomes of those observations corresponding to negative responses at baseline can be denoted a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Zhao, Jian, Zhao, Yun, Xiang, Liming, Khanal, Vishnu, Binns, Colin W, Lee, Andy H.
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/154900
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In longitudinal epidemiological studies consisting of a baseline stage and a follow-up stage, observations at the baseline stage may contain a countable proportion of negative responses. The time-to-event outcomes of those observations corresponding to negative responses at baseline can be denoted as zeros, which are excluded from standard survival analysis. Consequently, some important information on these subjects is therefore lost in the analysis. Furthermore, subjects are often clustered within hospitals, communities or health service centers, resulting in correlated observations. The framework of the two-part model has been developed and utilized widely to analyze semi-continuous data or count data with excess zeros, but its application to clustered time-to-event data with clumping at zero remains sparse.