A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack
In recent years, many side-channel attack (SCA) based on deep learning have emerged, making it possible to break protected encryption algorithms. How- ever, since the training of deep learning is based on back-propagation, a long training time is required. In deep learning SCA, because of the encryp...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/154903 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-154903 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1549032023-07-04T15:19:12Z A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack Huang, Xuyang Goh Wang Ling School of Electrical and Electronic Engineering Institute of Microelectronics (IME), A*STAR Singapore EWLGOH@ntu.edu.sg Engineering::Electrical and electronic engineering::Microelectronics In recent years, many side-channel attack (SCA) based on deep learning have emerged, making it possible to break protected encryption algorithms. How- ever, since the training of deep learning is based on back-propagation, a long training time is required. In deep learning SCA, because of the encryption algorithm, it is common to train multiple models based on the number of subkeys in one time attack, so the training time is multiplied as a drawback of DL- SCA. This work presented new Deep learning Side-channel Attack (DL-SCA) models that are based on Extreme Learning Machine (ELM). Unlike the conventional iterative backpropagation method, ELM is a fast learning algorithm that computes the trainable weights within a single iteration. Two models (Ensemble bpELM and CAE-ebpELM) are designed to perform SCA on AES with Boolean masking and desynchronization/jittering. The best models for both at- tack tasks can be trained 27× faster than MLP and 5× faster than CNN respectively. Verified and validated using ASCAD dataset, our models successfully recover all 16 subkeys using approximately 3K traces in the worst case scenario. Master of Science (Electronics) 2022-01-14T03:08:20Z 2022-01-14T03:08:20Z 2021 Thesis-Master by Coursework Huang, X. (2021). A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/154903 https://hdl.handle.net/10356/154903 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering::Microelectronics |
spellingShingle |
Engineering::Electrical and electronic engineering::Microelectronics Huang, Xuyang A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
description |
In recent years, many side-channel attack (SCA) based on deep learning have emerged, making it possible to break protected encryption algorithms. How- ever, since the training of deep learning is based on back-propagation, a long training time is required. In deep learning SCA, because of the encryption algorithm, it is common to train multiple models based on the number of subkeys in one time attack, so the training time is multiplied as a drawback of DL- SCA. This work presented new Deep learning Side-channel Attack (DL-SCA) models that are based on Extreme Learning Machine (ELM). Unlike the conventional iterative backpropagation method, ELM is a fast learning algorithm that computes the trainable weights within a single iteration. Two models (Ensemble bpELM and CAE-ebpELM) are designed to perform SCA on AES with Boolean masking and desynchronization/jittering. The best models for both at- tack tasks can be trained 27× faster than MLP and 5× faster than CNN respectively. Verified and validated using ASCAD dataset, our models successfully recover all 16 subkeys using approximately 3K traces in the worst case scenario. |
author2 |
Goh Wang Ling |
author_facet |
Goh Wang Ling Huang, Xuyang |
format |
Thesis-Master by Coursework |
author |
Huang, Xuyang |
author_sort |
Huang, Xuyang |
title |
A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
title_short |
A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
title_full |
A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
title_fullStr |
A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
title_full_unstemmed |
A backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
title_sort |
backpropagation extreme learning machine approach to fast training neural network-based side-channel attack |
publisher |
Nanyang Technological University |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/154903 |
_version_ |
1772825471177719808 |