Magnetic noise from metal objects near qubit arrays

All metal objects support fluctuating currents that are responsible for evanescent-wave Johnson noise in their vicinity due both to thermal and quantum effects. The noise fields can decohere qubits in their neighborhood. It is quantified by the average value of $B(x,t)B(x',t')$ and its...

Full description

Saved in:
Bibliographic Details
Main Authors: Kenny, Jonathan, Mallubhotla, Hruday, Joynt, Robert
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/154968
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:All metal objects support fluctuating currents that are responsible for evanescent-wave Johnson noise in their vicinity due both to thermal and quantum effects. The noise fields can decohere qubits in their neighborhood. It is quantified by the average value of $B(x,t)B(x',t')$ and its time Fourier transform. We develop the formalism particularly for objects whose dimensions are small compared with the skin depth, which is the appropriate regime for nanoscale devices. This leads to a general and surprisingly simple formula for the noise correlation function of an object of arbitrary shape. This formula has a clear physical interpretation in terms of induced currents in the object. It can also be the basis for straightforward numerical evaluation. For a sphere, a solution is given in closed form in terms of a generalized multipole expansion. Plots of the solution illustrate the physical principles involved. We give examples of how the spatial pattern of noise can affect quantum information processing in nearby qubits. The theory implies that if the qubit system is miniaturized to a scale $D$, then decoherence rates of qubits scale as $1/D$.