Semantic-guided distribution calibrating for few-shot classification

The meta-learning paradigm is a mainstream method to solve the problem of few-shot learning. It constructs multiple tasks through episodic training so that the model can quickly generalize to new tasks. However, episodic training only sample a few training instances (shots) per class for simulating...

全面介紹

Saved in:
書目詳細資料
主要作者: Qiu, Guochen
其他作者: Wen Bihan
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/155041
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English