WIFI fingerprinting indoor localization using local feature-based deep LSTM

Indoor localization has attracted more and more attention because of its importance in many applications. One of the most popular techniques for indoor localization is the received signal strength indicator (RSSI) based fingerprinting approach. Since RSSI values are very complicated and noisy, conve...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Zhenghua, Zou, Han, Yang, Jianfei, Jiang, Hao, Xie, Lihua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/155172
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Indoor localization has attracted more and more attention because of its importance in many applications. One of the most popular techniques for indoor localization is the received signal strength indicator (RSSI) based fingerprinting approach. Since RSSI values are very complicated and noisy, conventional machine learning algorithms often suffer from limited performance. Recently developed deep learning algorithms have been shown to be powerful for the analysis of complex data. In this paper, we propose a local feature-based deep long short-term memory (LF-DLSTM) approach for WiFi fingerprinting indoor localization. The local feature extractor attempts to reduce the noise effect and extract robust local features. The DLSTM network is able to encode temporal dependencies and learn high-level representations for the extracted sequential local features. Real experiments have been conducted in two different environments, i.e., a research lab and an office. We also compare the proposed approach with some state-of-the-art methods for indoor localization. The results show that the proposed approach achieves the best localization performance with mean localization errors of 1.48 and 1.75 m under the research lab and office environments, respectively. The improvements of our proposed approach over the state-of-the-art methods range from \text{18.98}{\%} to \text{53.46}{\%}.