An integrated multi-channel biopotential recording analog front-end IC with area-efficient driven-right-leg circuit
A multi-channel biopotential recording analog front-end (AFE) with a fully integrated area-efficient driven-right-leg (DRL) circuit is presented in this paper. The proposed AFE includes 10 channels of low-noise capacitive coupled instrumentation amplifier (CCIA), one shared 10-bit SAR ADC and a full...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/155175 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A multi-channel biopotential recording analog front-end (AFE) with a fully integrated area-efficient driven-right-leg (DRL) circuit is presented in this paper. The proposed AFE includes 10 channels of low-noise capacitive coupled instrumentation amplifier (CCIA), one shared 10-bit SAR ADC and a fully integrated DRL to enhance the system-level common-mode rejection ratio (CMRR). The proposed DRL circuit senses the common-mode at the CCIA output so that the AFE gain is reused as the DRL loop gain. Therefore, area efficient unit-gain buffer with small averaging capacitors can be used in DRL circuit to reduce the circuit area significantly. The proposed AFE has been implemented in a standard 0.18-μm CMOS process. The DRL circuit achieved more than 85% chip area reduction compared to the state-of-art on-chip DRL circuits and maximum 60 dB enhancement to system-level CMRR. Measurement results show high/low AFE gain of 60 dB/54 dB respectively with 1 μA/channel current consumption under 1.0 V power supply. The measured AFE input-referred noise in 1 Hz - 10k Hz range is 4.2 μVrms and the maximum system-level CMRR is 110 dB. |
---|