Anti-counterfeiting technology through artificial intelligence and challenge-response pairs

Information security has witnessed a tremendous growth in the last decade, covering a wide range of applications in our daily life from health, economy to intellectual property. Accordingly, security systems with strong anti-counterfeiting capability are crucial for protecting personal information a...

Full description

Saved in:
Bibliographic Details
Main Author: Yan, Zhiyuan
Other Authors: Y. C. Chen
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/155406
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-155406
record_format dspace
spelling sg-ntu-dr.10356-1554062023-07-04T17:42:54Z Anti-counterfeiting technology through artificial intelligence and challenge-response pairs Yan, Zhiyuan Y. C. Chen School of Electrical and Electronic Engineering yucchen@ntu.edu.sg Engineering::Electrical and electronic engineering::Semiconductors Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence Information security has witnessed a tremendous growth in the last decade, covering a wide range of applications in our daily life from health, economy to intellectual property. Accordingly, security systems with strong anti-counterfeiting capability are crucial for protecting personal information and privacy. Conventional cryptographic primitives are mostly designed based on mathematical one-way functions, which possess high risk of information extrusion. To overcome the weakness, optical physical unclonable functions (PUF) has been spotlighted as a promising tool in authentication and identification for its simple detection and rich optical features. Many types of photonic materials have thus been developed into PUF over the past decade by taking advantage of its complex optical signals. In this thesis, we used liquid crystal droplets and silver nanocubes to fabricate microscale and nanoscale optical PUF. Different algorithms for facile recognition and authentication were developed and studied. In the first part, we developed a deep learning network to achieve anti-counterfeiting based on multicolored liquid crystal droplets. In the second part, two-factor authentication are applied to fluorescence image generated from nanocubes, which can improve the accuracy of authentication and is an enhancement of PUFs decoding process. Finally, we compared and discuss the pros and cons of using binary methods and deep learning methods for anti-counterfeiting technologies. Master of Science (Electronics) 2022-02-23T01:36:31Z 2022-02-23T01:36:31Z 2021 Thesis-Master by Coursework Yan, Z. (2021). Anti-counterfeiting technology through artificial intelligence and challenge-response pairs. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/155406 https://hdl.handle.net/10356/155406 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering::Semiconductors
Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
spellingShingle Engineering::Electrical and electronic engineering::Semiconductors
Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence
Yan, Zhiyuan
Anti-counterfeiting technology through artificial intelligence and challenge-response pairs
description Information security has witnessed a tremendous growth in the last decade, covering a wide range of applications in our daily life from health, economy to intellectual property. Accordingly, security systems with strong anti-counterfeiting capability are crucial for protecting personal information and privacy. Conventional cryptographic primitives are mostly designed based on mathematical one-way functions, which possess high risk of information extrusion. To overcome the weakness, optical physical unclonable functions (PUF) has been spotlighted as a promising tool in authentication and identification for its simple detection and rich optical features. Many types of photonic materials have thus been developed into PUF over the past decade by taking advantage of its complex optical signals. In this thesis, we used liquid crystal droplets and silver nanocubes to fabricate microscale and nanoscale optical PUF. Different algorithms for facile recognition and authentication were developed and studied. In the first part, we developed a deep learning network to achieve anti-counterfeiting based on multicolored liquid crystal droplets. In the second part, two-factor authentication are applied to fluorescence image generated from nanocubes, which can improve the accuracy of authentication and is an enhancement of PUFs decoding process. Finally, we compared and discuss the pros and cons of using binary methods and deep learning methods for anti-counterfeiting technologies.
author2 Y. C. Chen
author_facet Y. C. Chen
Yan, Zhiyuan
format Thesis-Master by Coursework
author Yan, Zhiyuan
author_sort Yan, Zhiyuan
title Anti-counterfeiting technology through artificial intelligence and challenge-response pairs
title_short Anti-counterfeiting technology through artificial intelligence and challenge-response pairs
title_full Anti-counterfeiting technology through artificial intelligence and challenge-response pairs
title_fullStr Anti-counterfeiting technology through artificial intelligence and challenge-response pairs
title_full_unstemmed Anti-counterfeiting technology through artificial intelligence and challenge-response pairs
title_sort anti-counterfeiting technology through artificial intelligence and challenge-response pairs
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/155406
_version_ 1772826723219406848