Predicting the evolution of physics research from a complex network perspective

The advancement of science, as outlined by Popper and Kuhn, is largely qualitative, but with bibliometric data, it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore, it is also important to allocate finite resources to research topics that have the growt...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Wenyuan, Saganowsk, Stanislaw, Kazienko, Przemysław, Cheong, Siew Ann
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/155409
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-155409
record_format dspace
spelling sg-ntu-dr.10356-1554092023-02-28T19:56:58Z Predicting the evolution of physics research from a complex network perspective Liu, Wenyuan Saganowsk, Stanislaw Kazienko, Przemysław Cheong, Siew Ann School of Physical and Mathematical Sciences Complexity Institute Science::Physics Knowledge Evolution Machine Learning The advancement of science, as outlined by Popper and Kuhn, is largely qualitative, but with bibliometric data, it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore, it is also important to allocate finite resources to research topics that have the growth potential to accelerate the process from scientific breakthroughs to technological innovations. In this paper, we address this problem of quantitative knowledge evolution by analyzing the APS data sets from 1981 to 2010. We build the bibliographic coupling and co-citation networks, use the Louvain method to detect topical clusters (TCs) in each year, measure the similarity of TCs in consecutive years, and visualize the results as alluvial diagrams. Having the predictive features describing a given TC and its known evolution in the next year, we can train a machine learning model to predict future changes of TCs, i.e., their continuing, dissolving, merging, and splitting. We found the number of papers from certain journals, the degree, closeness, and betweenness to be the most predictive features. Additionally, betweenness increased significantly for merging events and decreased significantly for splitting events. Our results represent the first step from a descriptive understanding of the science of science (SciSci), towards one that is ultimately prescriptive. Ministry of Education (MOE) Published version This research was funded by the Singapore Ministry of Education Academic Research Fund Tier 2 under Grant Number MOE2017-T2-2-075, the National Science Centre, Poland, Project No. 2016/21/B/ST6/01463, the European Union’s Marie Skłodowska-Curie Program under Grant Agreement No. 691152 (RENOIR), and the Polish Ministry of Science and Higher Education under Grant Agreement No. 3628/H2020/2016/2, and the statutory funds of the Department of Computational Intelligence, Wrocław University of Science and Technology 2022-02-25T07:59:38Z 2022-02-25T07:59:38Z 2019 Journal Article Liu, W., Saganowsk, S., Kazienko, P. & Cheong, S. A. (2019). Predicting the evolution of physics research from a complex network perspective. Entropy, 21(12), 1152-. https://dx.doi.org/10.3390/e21121152 1099-4300 https://hdl.handle.net/10356/155409 10.3390/e21121152 2-s2.0-85079170486 12 21 1152 en MOE2017-T2-2-075 Entropy © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Physics
Knowledge Evolution
Machine Learning
spellingShingle Science::Physics
Knowledge Evolution
Machine Learning
Liu, Wenyuan
Saganowsk, Stanislaw
Kazienko, Przemysław
Cheong, Siew Ann
Predicting the evolution of physics research from a complex network perspective
description The advancement of science, as outlined by Popper and Kuhn, is largely qualitative, but with bibliometric data, it is possible and desirable to develop a quantitative picture of scientific progress. Furthermore, it is also important to allocate finite resources to research topics that have the growth potential to accelerate the process from scientific breakthroughs to technological innovations. In this paper, we address this problem of quantitative knowledge evolution by analyzing the APS data sets from 1981 to 2010. We build the bibliographic coupling and co-citation networks, use the Louvain method to detect topical clusters (TCs) in each year, measure the similarity of TCs in consecutive years, and visualize the results as alluvial diagrams. Having the predictive features describing a given TC and its known evolution in the next year, we can train a machine learning model to predict future changes of TCs, i.e., their continuing, dissolving, merging, and splitting. We found the number of papers from certain journals, the degree, closeness, and betweenness to be the most predictive features. Additionally, betweenness increased significantly for merging events and decreased significantly for splitting events. Our results represent the first step from a descriptive understanding of the science of science (SciSci), towards one that is ultimately prescriptive.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Liu, Wenyuan
Saganowsk, Stanislaw
Kazienko, Przemysław
Cheong, Siew Ann
format Article
author Liu, Wenyuan
Saganowsk, Stanislaw
Kazienko, Przemysław
Cheong, Siew Ann
author_sort Liu, Wenyuan
title Predicting the evolution of physics research from a complex network perspective
title_short Predicting the evolution of physics research from a complex network perspective
title_full Predicting the evolution of physics research from a complex network perspective
title_fullStr Predicting the evolution of physics research from a complex network perspective
title_full_unstemmed Predicting the evolution of physics research from a complex network perspective
title_sort predicting the evolution of physics research from a complex network perspective
publishDate 2022
url https://hdl.handle.net/10356/155409
_version_ 1759856631059841024