Deep reinforcement learning for time allocation and directional transmission in joint radar-communication
Current strategies for joint radar-communication (JRC) rely on prior knowledge of the communication and radar systems within the vehicle network. In this paper, we propose a framework for intelligent vehicles to conduct JRC, with minimal prior knowledge, in an environment where surrounding vehicles...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/155437 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Current strategies for joint radar-communication (JRC) rely on prior knowledge of the communication and radar systems within the vehicle network. In this paper, we propose a framework for intelligent vehicles to conduct JRC, with minimal prior knowledge, in an environment where surrounding vehicles execute radar detection periodically, which is typical in contemporary protocols. We introduce a metric on the usefulness of data to help the vehicle decide what, and to whom, data should be transmitted. The problem framework is cast as a Markov Decision Process (MDP). We show that deep reinforcement learning results in superior performance compared to non-learning algorithms. In addition, experimental results show that the trained deep reinforcement learning agents are robust to changes in the number of vehicles in the environment. |
---|