Graphene quantum dots assisted exfoliation of atomically-thin 2D materials and as-formed 0D/2D van der Waals heterojunction for HER

Atomically-thin 2D materials have changed the landscapes of many fields. Their applications however are limited by lack of methods for readily and scalable production with high quality. Herein, a simple strategy is reported to exfoliate pristine single or few-layered 2D materials (MoS2, h-BN, WS2, g...

Full description

Saved in:
Bibliographic Details
Main Authors: Gong, Jun, Zhang, Zheye, Zeng, Zhiping, Wang, Wenjun, Kong, Linguxan, Liu, Jiyang, Chen, Peng
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/155468
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Atomically-thin 2D materials have changed the landscapes of many fields. Their applications however are limited by lack of methods for readily and scalable production with high quality. Herein, a simple strategy is reported to exfoliate pristine single or few-layered 2D materials (MoS2, h-BN, WS2, g-C3N4 microsheets) using bottom-up grown amphiphilic graphene quantum dots (GQDs) as both the intercalation agent and dispersant. Further, it is shown that the as-formed GQD/MoS2 van der Waals heterojunctions (vdWHs) give enhanced performance for electrocatalysis of hydrogen evolution reaction (HER) owing to the synergistic coupling at the 0D/2D heterojunction, delivering a current density of 10 mA cm−2 at a low overpotential of 160 mV with a small Tafel slope of 56.9 mV dec−1. In addition to providing a new method for preparing ultrathin 2D microsheets, this study unleashes the application potential of 2D materials and GQD-based 0D/2D vdWHs as non-precious electrocatalysts.