A comparison of distance bounds for quasi-twisted codes

Spectral bounds on the minimum distance of quasi-twisted codes over finite fields are proposed, based on eigenvalues of polynomial matrices and the corresponding eigenspaces. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a way similar to how the Roos and shift bounds extend the BCH and...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ezerman, Martianus Frederic, Lampos, John Mark, Ling, San, Özkaya, Buket, Tharnnukhroh. Jareena
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/155577
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Spectral bounds on the minimum distance of quasi-twisted codes over finite fields are proposed, based on eigenvalues of polynomial matrices and the corresponding eigenspaces. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a way similar to how the Roos and shift bounds extend the BCH and HT bounds for cyclic codes. The eigencodes of a quasi-twisted code in the spectral theory and the outer codes in its concatenated structure are related. A comparison based on this relation verifies that the Jensen bound always outperforms the spectral bound under special conditions, which yields a similar relation between the Lally and the spectral bounds. The performances of the Lally, Jensen and spectral bounds are presented in comparison with each other.