CO₂ hydrogenation to methanol on tungsten-doped Cu/CeO₂ catalysts
The catalytic hydrogenation of CO2 to methanol depends significantly on the structures of metal-oxide interfaces. We show that doping a high-valency metal, viz. tungsten, to CeO2 could render improved catalytic activity for the hydrogenation of CO2 on a Cu/CeW0.25Ox catalyst, whilst making it more s...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/155652 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The catalytic hydrogenation of CO2 to methanol depends significantly on the structures of metal-oxide interfaces. We show that doping a high-valency metal, viz. tungsten, to CeO2 could render improved catalytic activity for the hydrogenation of CO2 on a Cu/CeW0.25Ox catalyst, whilst making it more selective towards methanol than the undoped Cu/CeO2. We experimentally investigated and elucidated the structural-functional relationship of the Cu/CeO2 interface for CO2 hydrogenation. The promotional effects are attributed to the irreversible reduction of Ce4+ to Ce3+ by W-doping, the suppression of the formation of redox-active oxygen vacancies on CeO2, and the activation of the formate pathway for CO2 hydrogenation. This catalyst design strategy differs fundamentally from those commonly used for CeO2-supported catalysts, in which oxygen vacancies with high redox activity are considered desirable. |
---|