Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection
Intumescent fire-retardants (IFR) are widely applied in fire protection coatings of steel and wooden structures. The addition of inorganic fillers, such as layered ionic clays, can improve the fireproof performance of IFR coatings. However, a fundamental insight of how these filler materials synergi...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/155654 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-155654 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1556542023-12-29T06:54:36Z Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection Hu, Xiaochun Luo, Yuqing Liu, Wen Sun, Zhiqiang School of Chemical and Biomedical Engineering Engineering::Chemical engineering Fire-Retardant Intumescent Coating Intumescent fire-retardants (IFR) are widely applied in fire protection coatings of steel and wooden structures. The addition of inorganic fillers, such as layered ionic clays, can improve the fireproof performance of IFR coatings. However, a fundamental insight of how these filler materials synergistically interact with the IFR materials remains elusive. In this study, we address this fundamental knowledge gap by systematically investigating the synergy between the IFR fire protection coatings and the CaAlCO3-layer double hydroxide (LDH) or montmorillonite (MMT) fillers, which render substantially longer fire resistance (>20 min), reduced specific extinction area (by 54.7 and 44.1 m2 kg−2, respectively), and reduced heat release (by 0.9 and 0.7 MJ m−2, respectively). Combining experimental results and density functional theory calculations, we show for the first time that the superior fireproof performance of the MMT-IFR fire coating originates from the chemical modifications of the char layer by Si-doping. The chemical stabilisation of the silicon- and nitrogen-doped graphene (Si–N-G) structures improves the oxidation resistance of the char layer. Additionally, the formation of the Si–N-G structures with limited lattice deformation stabilised the porous morphology of the char layer, thereby promoting its heat-shielding performance. Submitted/Accepted version This work was financially supported by the National Natural Science Foundation of China (Grant No. 51876224) and the Innovation-Driven Project of Central South University (Grant No. 2020CX008). X. Hu acknowledges the China Scholarship Council (CSC) for financial support. 2022-03-11T05:07:35Z 2022-03-11T05:07:35Z 2022 Journal Article Hu, X., Luo, Y., Liu, W. & Sun, Z. (2022). Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection. Carbon, 187, 290-301. https://dx.doi.org/10.1016/j.carbon.2021.11.025 0008-6223 https://hdl.handle.net/10356/155654 10.1016/j.carbon.2021.11.025 2-s2.0-85119255097 187 290 301 en Carbon © 2021 Elsevier Ltd. All rights reserved. This paper was published in Carbon and is made available with permission of Elsevier Ltd. application/pdf application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Chemical engineering Fire-Retardant Intumescent Coating |
spellingShingle |
Engineering::Chemical engineering Fire-Retardant Intumescent Coating Hu, Xiaochun Luo, Yuqing Liu, Wen Sun, Zhiqiang Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
description |
Intumescent fire-retardants (IFR) are widely applied in fire protection coatings of steel and wooden structures. The addition of inorganic fillers, such as layered ionic clays, can improve the fireproof performance of IFR coatings. However, a fundamental insight of how these filler materials synergistically interact with the IFR materials remains elusive. In this study, we address this fundamental knowledge gap by systematically investigating the synergy between the IFR fire protection coatings and the CaAlCO3-layer double hydroxide (LDH) or montmorillonite (MMT) fillers, which render substantially longer fire resistance (>20 min), reduced specific extinction area (by 54.7 and 44.1 m2 kg−2, respectively), and reduced heat release (by 0.9 and 0.7 MJ m−2, respectively). Combining experimental results and density functional theory calculations, we show for the first time that the superior fireproof performance of the MMT-IFR fire coating originates from the chemical modifications of the char layer by Si-doping. The chemical stabilisation of the silicon- and nitrogen-doped graphene (Si–N-G) structures improves the oxidation resistance of the char layer. Additionally, the formation of the Si–N-G structures with limited lattice deformation stabilised the porous morphology of the char layer, thereby promoting its heat-shielding performance. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Hu, Xiaochun Luo, Yuqing Liu, Wen Sun, Zhiqiang |
format |
Article |
author |
Hu, Xiaochun Luo, Yuqing Liu, Wen Sun, Zhiqiang |
author_sort |
Hu, Xiaochun |
title |
Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
title_short |
Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
title_full |
Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
title_fullStr |
Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
title_full_unstemmed |
Synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
title_sort |
synergistic interaction between inorganic layered materials and intumescent fire retardants for advanced fire protection |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/155654 |
_version_ |
1787136821701902336 |