Machine learning for predictive maintenance of distributed systems

Evidently, accurate remaining useful life estimation provides numerous benefits in a wide range of real-world applications and industrial settings. Using multi-channel sensing signals, this project investigated a new deep convolutional neural network-based architecture for estimating the remaining u...

全面介紹

Saved in:
書目詳細資料
主要作者: Liu, Yuxuan
其他作者: Tan Yap Peng
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/155878
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Evidently, accurate remaining useful life estimation provides numerous benefits in a wide range of real-world applications and industrial settings. Using multi-channel sensing signals, this project investigated a new deep convolutional neural network-based architecture for estimating the remaining useful life of systems. In the proposed deep architecture, an innovative convolutional neural network with 2-dimensional input and 1-dimensional convolution and pooling layer structure is used to better capture notable patterns of sensor inputs at multiple time scales. All detected degrading patterns are methodically integrated in the estimate model and eventually help to estimate the remaining time. The proposed algorithm's performance on the Commercial Modular Aero Propulsion System Simulation (C-MAPSS) dataset is evaluated, and the outcome predictions show that it can achieve high accuracy when compared to some state-of-the-art regression-based models.