Are batch effects still relevant in the age of big data?
Batch effects (BEs) are technical biases that may confound analysis of high-throughput biotechnological data. BEs are complex and effective mitigation is highly context-dependent. In particular, the advent of high-resolution technologies such as single-cell RNA sequencing presents new challenges. We...
Saved in:
Main Authors: | Goh, Wilson Wen Bin, Yong, Chern Han, Wong, Limsoon |
---|---|
其他作者: | Lee Kong Chian School of Medicine (LKCMedicine) |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/155992 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Examining the practical limits of batch effect-correction algorithms : when should you care about batch effects?
由: Zhou, Longjian, et al.
出版: (2021) -
Perspectives for better batch effect correction in mass-spectrometry-based proteomics
由: Phua, Ser-Xian, et al.
出版: (2023) -
Consecutive batch model editing with HooK layers
由: LI, Shuaiyi, et al.
出版: (2024) -
Tensor computing for big data analytic
由: Ong, Jenn Bing
出版: (2021) -
Transcriptional profiling of batch and fed-batch protein-free 293-HEK cultures
由: Lee, Y.Y., et al.
出版: (2014)