Optically driven giant superbunching from a single perovskite quantum dot
Photon superbunching is a signature of a strong correlation between photons, which is a crucial resource needed in quantum communication and computation. As such, a superbunched photon source based on a material with high quantum efficiency, like cesium lead halide perovskite, is highly desirable. U...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/156024 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Photon superbunching is a signature of a strong correlation between photons, which is a crucial resource needed in quantum communication and computation. As such, a superbunched photon source based on a material with high quantum efficiency, like cesium lead halide perovskite, is highly desirable. Utilizing the large dark–bright exciton splitting in CsPbBr3 quantum dot (QD), the authors achieve a superbunching with a large g(2)(0) ≈ 30 from an optically driven single CsPbBr3 QD emission at cryogenic temperature. The cascaded emission is identified as the cause of this superbunching by utilizing second-order cross-correlation measurement and exploring the excitation power and temperature dependence of the bunching level. The findings have immediate implications on the basic understanding of a single perovskite QD emission and its application as a quantum light source. |
---|