Optically driven giant superbunching from a single perovskite quantum dot
Photon superbunching is a signature of a strong correlation between photons, which is a crucial resource needed in quantum communication and computation. As such, a superbunched photon source based on a material with high quantum efficiency, like cesium lead halide perovskite, is highly desirable. U...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156024 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | Photon superbunching is a signature of a strong correlation between photons, which is a crucial resource needed in quantum communication and computation. As such, a superbunched photon source based on a material with high quantum efficiency, like cesium lead halide perovskite, is highly desirable. Utilizing the large dark–bright exciton splitting in CsPbBr3 quantum dot (QD), the authors achieve a superbunching with a large g(2)(0) ≈ 30 from an optically driven single CsPbBr3 QD emission at cryogenic temperature. The cascaded emission is identified as the cause of this superbunching by utilizing second-order cross-correlation measurement and exploring the excitation power and temperature dependence of the bunching level. The findings have immediate implications on the basic understanding of a single perovskite QD emission and its application as a quantum light source. |
---|