Optically driven giant superbunching from a single perovskite quantum dot

Photon superbunching is a signature of a strong correlation between photons, which is a crucial resource needed in quantum communication and computation. As such, a superbunched photon source based on a material with high quantum efficiency, like cesium lead halide perovskite, is highly desirable. U...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Ziyu, Abdullah Rasmita, Long, Guankui, Chen, Disheng, Zhang, Chusheng, Garcia, Oscar Garcia, Cai, Hongbing, Xiong, Qihua, Gao, Weibo
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156024
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Photon superbunching is a signature of a strong correlation between photons, which is a crucial resource needed in quantum communication and computation. As such, a superbunched photon source based on a material with high quantum efficiency, like cesium lead halide perovskite, is highly desirable. Utilizing the large dark–bright exciton splitting in CsPbBr3 quantum dot (QD), the authors achieve a superbunching with a large g(2)(0) ≈ 30 from an optically driven single CsPbBr3 QD emission at cryogenic temperature. The cascaded emission is identified as the cause of this superbunching by utilizing second-order cross-correlation measurement and exploring the excitation power and temperature dependence of the bunching level. The findings have immediate implications on the basic understanding of a single perovskite QD emission and its application as a quantum light source.