Polarization-dependent purcell enhancement on a two-dimensional h-BN/WS₂ light emitter with a dielectric plasmonic nanocavity
Integrating two-dimensional (2D) transition-metal dichalcogenides (TMDCs) into dielectric plasmonic nanostructures enables the miniaturization of on-chip nanophotonic devices. Here we report on a high-quality light emitter based on the newly designed 2D h-BN/WS2 heterostructure integrated with an ar...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156056 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Integrating two-dimensional (2D) transition-metal dichalcogenides (TMDCs) into dielectric plasmonic nanostructures enables the miniaturization of on-chip nanophotonic devices. Here we report on a high-quality light emitter based on the newly designed 2D h-BN/WS2 heterostructure integrated with an array of TiO2 nanostripes. Different from a traditional strongly coupled system such as the TMDCs/metallic plasmonic nanostructure, we first employ dielectric nanocavities and achieve a Purcell enhancement on the nanoscale at room temperature. Furthermore, we demonstrate that the light emission strength can be effectively controlled by tuning the polarization configuration. Such a polarization dependence meanwhile could be proof of the resonant energy transfer theory of dipole-dipole coupling between TMDCs and a dielectric nanostructure. This work gains experimental and simulated insights into modified spontaneous emission with dielectric nanoplasmonic platforms, presenting a promising route toward practical applications of 2D semiconducting photonic emitters on a silica-based chip. |
---|