Interpenetrating PAA-PEDOT conductive hydrogels for flexible skin sensors

Conductive hydrogels are promising material candidates in artificial skin and muscles, flexible and implantable bioelectronics, and tissue engineering. However, it is still a challenge to formulate hydrogels with high electrical conductivity without compromising their physicochemical properties. Her...

Full description

Saved in:
Bibliographic Details
Main Authors: Fu, Fanfan, Wang, Jilei, Yu, Jing
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156081
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Conductive hydrogels are promising material candidates in artificial skin and muscles, flexible and implantable bioelectronics, and tissue engineering. However, it is still a challenge to formulate hydrogels with high electrical conductivity without compromising their physicochemical properties. Herein, we report an interpenetrating poly(acrylic acid)-poly (3,4-ethylenedioxythiophene) (PAA-PEDOT) hydrogel with high electrical conductivity and good stretchability. A second PEDOT hydrogel network is electrochemically polymerized into an existing PAA hydrogel network. The interpenetrating hydrogel can be readily prepared and can be integrated into epidermal flexible electronic devices for the real-time, on-body detection of various ions in sweat. The interpenetrating PAA-PEDOT conductive hydrogel has the potential to be an important building material for various flexible electronic devices for personalized healthcare.