Domain wall pinning through nanoscale interfacial Dzyaloshinskii-Moriya interaction

Neuromorphic computing (NC) has been gaining attention as a potential candidate for artificial intelligence. The building blocks for NC are neurons and synapses. Research studies have indicated that domain wall (DW) devices are one of the most energy-efficient contenders for realizing NC. Moreover,...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kumar, Durgesh, Chan, Jianpeng, Piramanayagam, S. N.
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/156200
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Neuromorphic computing (NC) has been gaining attention as a potential candidate for artificial intelligence. The building blocks for NC are neurons and synapses. Research studies have indicated that domain wall (DW) devices are one of the most energy-efficient contenders for realizing NC. Moreover, synaptic functions can be achieved by obtaining multi-resistance states in DW devices. However, in DW devices with no artificial pinning, it is difficult to control the DW position, and hence achieving multilevel resistance is difficult. Here, we have proposed the concept of nanoscale interfacial Dzyaloshinskii-Moriya interaction (iDMI) for controllably stopping the DWs at specific positions, and hence, realizing multi-resistance states. We show that the nanoscale iDMI forms an energy barrier (well), which can controllably pin the DWs at the pinning sites. Moreover, a tunable depinning current density was achieved by changing the width and iDMI constant of the confinement region. We have also studied pinning in a device with five successive pinning sites. This feature is a proof-of-concept for realizing multi-resistance states in the proposed concept. Based on these observations, a magnetic tunnel junction - where the free layer is made up of the proposed concept - can be fabricated to achieve synapses for NC applications.