Perovskite polariton parametric oscillator

Optical parametric oscillators (OPOs) have been widely applied in spectroscopy, squeezed light, and correlated photons, as well as quantum information. Conventional OPOs usually suffer from a high power threshold limited by weak high-order nonlinearity in traditional pure photonic systems. Alternati...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Jinqi, Su, Rui, Fieramosca, Antonio, Ghosh, Sanjib, Zhao, Jiaxin, Liew, Timothy Chi Hin, Xiong, Qihua
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156277
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Optical parametric oscillators (OPOs) have been widely applied in spectroscopy, squeezed light, and correlated photons, as well as quantum information. Conventional OPOs usually suffer from a high power threshold limited by weak high-order nonlinearity in traditional pure photonic systems. Alternatively, polaritonic systems based on hybridized exciton-photon quasi-particles exhibit enhanced optical nonlinearity by dressing photons with excitons, ensuring highly nonlinear operations with low power consumption. We report an on-chip perovskite polariton parametric oscillator with a low threshold. Under the resonant excitation at a range of angles, the signal at the ground state is obtained, emerging from the polariton-polariton interactions at room temperature. Our results advocate a practical way toward integrated nonlinear polaritonic devices with low thresholds.