The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast
Actin polymerization to filamentous network provides structural basis for multiple biological activities, such as endocytosis, cell migration and intracellular transportation. The diversity of actin filament structures and related cellular functions are dependent on the dynamics reorganization of ac...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Doctor of Philosophy |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156325 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-156325 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1563252023-02-28T18:37:05Z The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast Han, Xiao Miao Yansong School of Biological Sciences yansongm@ntu.edu.sg Science::Biological sciences Actin polymerization to filamentous network provides structural basis for multiple biological activities, such as endocytosis, cell migration and intracellular transportation. The diversity of actin filament structures and related cellular functions are dependent on the dynamics reorganization of actin network by a group of actin-binding proteins (ABPs). Coronin is one of the ABPs participating in multiple actin regulation pathways. As a conserved protein family, coronins exist in all eukaryotes and their functions depend on a common three-domain structure: N-terminal β-propeller region is the conserved domain as structural platform for actin-binding, C-terminal coiled-coil region mediates homo-oligomerization, whereas middle region is an intrinsically disordered region (IDR) that is poorly understood. My Ph.D. studies focused on investigation IDR of Saccharomyces cerevisiae coronin1(Crn1). In the first part, we uncovered the role of IDR in regulation of its nearby domains, especially C-terminal coiled-coil domain. Through biochemical and biophysical characterizations, we found IDR is critical for integrity and oligomerization of full-length Crn1 protein by providing two important roles: 1) A flexible spacer between N-terminal and C-terminal. 2) Optimization the oligomerization of coiled-coil domain of Crn1. To evaluate the importance of IDR-guided oligomerization regulation of Crn1, protein engineering combined with biochemical and cell biology experiments were used, which proved tetramer is the optimum functional state of Crn1 both in vivo and in vitro. Further systematic analysis of IDR generated a map displaying a unique pattern of IDR length distribution among coronin protein family, which motivated us to find: 1) Universal necessity of IDR for in vivo localization of coronins. 2) Length of IDR tunes its control to Crn1 oligomerization. The second part talked about phosphorylation regulation of IDR. We firstly identified IDR is the target region of phosphorylation modification by Cdk1 complex in vivo. Through site mutagenesis and NMR spectrometry approach, we uncovered two phosphorylation-dependent regulatory roles of IDR: 1) Phosphorylation enhances structural dynamics of IDR. 2) Phosphorylation modulates in vivo oligomerization and functionality of Crn1. My research provided knowledge for understanding the biological meaning of IDR existence in coronin protein family and shed lights on the importance of structural disorder in regulation of molecular assembly of actin-binding proteins. Doctor of Philosophy 2022-04-12T08:45:27Z 2022-04-12T08:45:27Z 2021 Thesis-Doctor of Philosophy Han, X. (2021). The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156325 https://hdl.handle.net/10356/156325 10.32657/10356/156325 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Biological sciences |
spellingShingle |
Science::Biological sciences Han, Xiao The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
description |
Actin polymerization to filamentous network provides structural basis for multiple biological activities, such as endocytosis, cell migration and intracellular transportation. The diversity of actin filament structures and related cellular functions are dependent on the dynamics reorganization of actin network by a group of actin-binding proteins (ABPs). Coronin is one of the ABPs participating in multiple actin regulation pathways. As a conserved protein family, coronins exist in all eukaryotes and their functions depend on a common three-domain structure: N-terminal β-propeller region is the conserved domain as structural platform for actin-binding, C-terminal coiled-coil region mediates homo-oligomerization, whereas middle region is an intrinsically disordered region (IDR) that is poorly understood. My Ph.D. studies focused on investigation IDR of Saccharomyces cerevisiae coronin1(Crn1). In the first part, we uncovered the role of IDR in regulation of its nearby domains, especially C-terminal coiled-coil domain. Through biochemical and biophysical characterizations, we found IDR is critical for integrity and oligomerization of full-length Crn1 protein by providing two important roles: 1) A flexible spacer between N-terminal and C-terminal. 2) Optimization the oligomerization of coiled-coil domain of Crn1. To evaluate the importance of IDR-guided oligomerization regulation of Crn1, protein engineering combined with biochemical and cell biology experiments were used, which proved tetramer is the optimum functional state of Crn1 both in vivo and in vitro. Further systematic analysis of IDR generated a map displaying a unique pattern of IDR length distribution among coronin protein family, which motivated us to find: 1) Universal necessity of IDR for in vivo localization of coronins. 2) Length of IDR tunes its control to Crn1 oligomerization. The second part talked about phosphorylation regulation of IDR. We firstly identified IDR is the target region of phosphorylation modification by Cdk1 complex in vivo. Through site mutagenesis and NMR spectrometry approach, we uncovered two phosphorylation-dependent regulatory roles of IDR: 1) Phosphorylation enhances structural dynamics of IDR. 2) Phosphorylation modulates in vivo oligomerization and functionality of Crn1. My research provided knowledge for understanding the biological meaning of IDR existence in coronin protein family and shed lights on the importance of structural disorder in regulation of molecular assembly of actin-binding proteins. |
author2 |
Miao Yansong |
author_facet |
Miao Yansong Han, Xiao |
format |
Thesis-Doctor of Philosophy |
author |
Han, Xiao |
author_sort |
Han, Xiao |
title |
The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
title_short |
The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
title_full |
The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
title_fullStr |
The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
title_full_unstemmed |
The function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
title_sort |
function of intrinsically disordered region of actin binding protein coronin1 in budding yeast |
publisher |
Nanyang Technological University |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/156325 |
_version_ |
1759854617990004736 |