Development of porous electrodes for electrocatalytic hydrogen evolution
Switching to clean, renewable energy is essential to reduce carbon emissions and mitigate global warming. Unfortunately, renewable energy is intermittent, and strategies to store renewable energy are needed before renewable energy can meet humanity’s energy needs. Hydrogen is a clean fuel with high...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156334 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Switching to clean, renewable energy is essential to reduce carbon emissions and mitigate global warming. Unfortunately, renewable energy is intermittent, and strategies to store renewable energy are needed before renewable energy can meet humanity’s energy needs. Hydrogen is a clean fuel with high energy density and produces only harmless water when oxidized for energy. Green hydrogen can be produced from water electrolysis using renewable electricity, but production is currently not economically competitive as current water electrolyzers require expensive platinum-group metal catalysts. The catalytic activity of the edge sites of molybdenum disulfide is almost as high as platinum, and it is non-toxic, cheap, and earth-abundant. This makes molybdenum disulfide a promising replacement for platinum in water electrolyzers. Bulk molybdenum disulfide has low overall catalytic activity because only the edge sites are catalytically active whereas as the basal planes are inert. In this project, we adopt an inverse opal structure to preferentially expose more edge sites in molybdenum disulfide and introduce sulfur vacancies to activate the basal plane for catalytic water splitting. |
---|