Studies on surface modification of ZnO by natural therapeutic agents

Natural therapeutic ligands have been incorporated with ZnO nanoparticles to form ZnO nanocomposites via surface modification to improve their bioavailability as well as to provide a more localised delivery in vivo. Despite so, the roles of their functional groups in coordinating with ZnO nanopartic...

Full description

Saved in:
Bibliographic Details
Main Author: K Diviyah
Other Authors: Kedar Hippalgaonkar
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156360
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Natural therapeutic ligands have been incorporated with ZnO nanoparticles to form ZnO nanocomposites via surface modification to improve their bioavailability as well as to provide a more localised delivery in vivo. Despite so, the roles of their functional groups in coordinating with ZnO nanoparticles to form such nanocomposites are not well documented. As such, this project narrowed down to several therapeutic ligands containing the functional groups of interest and studied how these functional groups played respective roles in coordinating with Zno nanoparticles. The respective ZnO-nanocomposites were synthesised through a wet chemistry method and were then characterised under identical conditions based on UV-VIS spectroscopy, FTIR spectroscopy and SEM to understand the roles they play with relative to successful coordination with ZnO nanoparticles. Upon characterisation, it was understood that UV-VIS is insufficient to understand whether successful coordination with ZnO nanoparticles is taking place. FTIR gives a better overview on the roles of the functional groups with respect to interaction with ZnO nanoparticles. Within the scope of the study, it was found that phenolic OH, carboxylic acid, 1-3 diketone with conjugated double bonds and single ketone with conjugated double bonds have better coordination with ZnO nanoparticles.