extendedGAN+ : improved data augmentation method for indoor localisation

Indoor Positioning System (IPS) contains the same function as a Global Positioning System (GPS), which is to give the location of the device. IPS is built for indoor usage, while GPS is for outdoors. IPS can be useful for indoor tours, or even locating another device within the building. This pro...

Full description

Saved in:
Bibliographic Details
Main Author: Goh, Wayne Yun Bo
Other Authors: Lee Bu Sung, Francis
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156407
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-156407
record_format dspace
spelling sg-ntu-dr.10356-1564072022-05-04T04:50:38Z extendedGAN+ : improved data augmentation method for indoor localisation Goh, Wayne Yun Bo Lee Bu Sung, Francis School of Computer Science and Engineering EBSLEE@ntu.edu.sg Engineering::Computer science and engineering Indoor Positioning System (IPS) contains the same function as a Global Positioning System (GPS), which is to give the location of the device. IPS is built for indoor usage, while GPS is for outdoors. IPS can be useful for indoor tours, or even locating another device within the building. This project used Received Signal Strength Indicator (RSSI) emitted from the wireless Access Points (AP) to develop the IPS as many existing infrastructures, such as shopping malls, already have existing APs. An IPS consists of 2 parts: a phone application for the user, and the indoor localisation model to predict the location via RSSI. The use of APs for indoor localisation meant that no additional devices were needed for installation. The development of the indoor localisation model requires the use of deep learning. Deep learning imitates the way humans gain knowledge to make a prediction. It gains knowledge from the data we feed. A good localisation model requires a huge diversity of good data. This means that a huge amount of time and effort is required for data collection. To minimise the physical effort needed for data collection, this report proposes the use of extendedGAN+, which contains artificially generated data, also known as data augmentation, to improve the performance of deep learning. The proposed method was compared with some existing data augmentation methods. The extendedGAN+ leverage on the data aggregation method using Dirichlet and Wasserstein Generative Adversarial Network with Gradient Penalty (WGANGP) to generate augmented dataset. The result uses the public dataset UJIndoorLoc, and the selfcollected data at a building complex. The extendedGAN+ performs better than the other augmentation methods, giving an improved performance of the localisation model by a maximum of 0.32 m. The results can be further improved with more tests on different datasets, such as by increasing the number of augmented data and optimising the localisation model. Bachelor of Engineering (Computer Science) 2022-04-16T10:49:39Z 2022-04-16T10:49:39Z 2022 Final Year Project (FYP) Goh, W. Y. B. (2022). extendedGAN+ : improved data augmentation method for indoor localisation. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156407 https://hdl.handle.net/10356/156407 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Computer science and engineering
spellingShingle Engineering::Computer science and engineering
Goh, Wayne Yun Bo
extendedGAN+ : improved data augmentation method for indoor localisation
description Indoor Positioning System (IPS) contains the same function as a Global Positioning System (GPS), which is to give the location of the device. IPS is built for indoor usage, while GPS is for outdoors. IPS can be useful for indoor tours, or even locating another device within the building. This project used Received Signal Strength Indicator (RSSI) emitted from the wireless Access Points (AP) to develop the IPS as many existing infrastructures, such as shopping malls, already have existing APs. An IPS consists of 2 parts: a phone application for the user, and the indoor localisation model to predict the location via RSSI. The use of APs for indoor localisation meant that no additional devices were needed for installation. The development of the indoor localisation model requires the use of deep learning. Deep learning imitates the way humans gain knowledge to make a prediction. It gains knowledge from the data we feed. A good localisation model requires a huge diversity of good data. This means that a huge amount of time and effort is required for data collection. To minimise the physical effort needed for data collection, this report proposes the use of extendedGAN+, which contains artificially generated data, also known as data augmentation, to improve the performance of deep learning. The proposed method was compared with some existing data augmentation methods. The extendedGAN+ leverage on the data aggregation method using Dirichlet and Wasserstein Generative Adversarial Network with Gradient Penalty (WGANGP) to generate augmented dataset. The result uses the public dataset UJIndoorLoc, and the selfcollected data at a building complex. The extendedGAN+ performs better than the other augmentation methods, giving an improved performance of the localisation model by a maximum of 0.32 m. The results can be further improved with more tests on different datasets, such as by increasing the number of augmented data and optimising the localisation model.
author2 Lee Bu Sung, Francis
author_facet Lee Bu Sung, Francis
Goh, Wayne Yun Bo
format Final Year Project
author Goh, Wayne Yun Bo
author_sort Goh, Wayne Yun Bo
title extendedGAN+ : improved data augmentation method for indoor localisation
title_short extendedGAN+ : improved data augmentation method for indoor localisation
title_full extendedGAN+ : improved data augmentation method for indoor localisation
title_fullStr extendedGAN+ : improved data augmentation method for indoor localisation
title_full_unstemmed extendedGAN+ : improved data augmentation method for indoor localisation
title_sort extendedgan+ : improved data augmentation method for indoor localisation
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/156407
_version_ 1734310281757065216