Grounding referring expressions in images with neural module tree network

Grounding referring expressions in images or visual grounding for short, is a task used in Artificial Intelligence (AI) to locate and identify a target object through localization of natural language in images. The complex task of visual grounding requires composite visual reasoning to better m...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Kuan Yeow
Other Authors: Zhang Hanwang
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156618
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Grounding referring expressions in images or visual grounding for short, is a task used in Artificial Intelligence (AI) to locate and identify a target object through localization of natural language in images. The complex task of visual grounding requires composite visual reasoning to better mimic the human logical thought process. However, existing methods do not extend towards the multiple components of natural language and over-simplify it into either a monolithic sentence embedding or a rough composition of subject-predicate-object. To venture more into the complexity of natural language, a Neural Module Tree network (NMTree) is applied on the dependency parsing tree of the referring expression during the visual grounding process. Each node of the dependency parsing tree is taken as a neural module that calculates visual attention where the grounding score is accumulated in a bottom-up fashion to the root node of the tree. Gumbel-Softmax approximation is utilized to train the modules and their assembly end-to-end reducing parsing errors. NMTree will allow for the composite reasoning portion to be more loosely coupled from the visual grounding providing more intuitive perception during localization. The inclusion of NMTree had provided better explanation of grounding natural language and outperforms state-of-the-arts on several benchmarks.