Hardware-software co-design and optimization for point-to-point network-on-chip based many-core systems

Many-core systems, which consist of numerous processing elements (PEs), provide high execution parallelism. To connect these PEs, network-on-chip (NoC) is proposed as an efficient on-chip communication paradigm. Nevertheless, NoC faces two challenges in reducing communication overheads. Firstly, the...

全面介紹

Saved in:
書目詳細資料
主要作者: Chen, Hui
其他作者: Weichen Liu
格式: Thesis-Doctor of Philosophy
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/156762
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Many-core systems, which consist of numerous processing elements (PEs), provide high execution parallelism. To connect these PEs, network-on-chip (NoC) is proposed as an efficient on-chip communication paradigm. Nevertheless, NoC faces two challenges in reducing communication overheads. Firstly, the hop-by-hop buffering and arbitration in NoC lead to huge transmission delay and energy consumption. Secondly, NoC resource management strategies, e.g., mapping and routing, are not fully optimized. To address these challenges, we propose software and hardware collaborated methodologies. (1) We propose a software-defined point-to-point NoC architecture, ArSMART, enabling single-cycle multi-hop transmission and application-specific communication optimization. (2) We present a method to co-optimize task mapping and routing to accelerate computation and communication simultaneously, extending ArSMART to heterogeneous systems. (3) We fully utilize the parallelism that exists in NoCs through parallel multipath transmission, further reducing transmission latency in ArSMART. Experiments show our solutions achieve remarkable performance improvement in terms of latency, area, and power.