All-solid antiresonant fiber design for high-efficiency three-level lasing in ytterbium-doped fiber lasers

We propose and investigate an all-solid ytterbium-doped antiresonant fiber (YbARF) design to inherently suppress four-level lasing with >20 dB/m of selective loss and achieve high-efficiency three-level lasing while maintaining near-diffraction-limited operation with an ultra-large mode area of a...

Full description

Saved in:
Bibliographic Details
Main Authors: Goel, Charu, Yoo, Seongwoo
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156835
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We propose and investigate an all-solid ytterbium-doped antiresonant fiber (YbARF) design to inherently suppress four-level lasing with >20 dB/m of selective loss and achieve high-efficiency three-level lasing while maintaining near-diffraction-limited operation with an ultra-large mode area of approximately 3630 µm2. The YbARF is designed such that the high-gain wavelengths corresponding to four-level lasing lie in the resonance band characterized by high confinement loss. This enables three-level lasing with high efficiency in a short (0.8-m-long) YbARF, making it a potential candidate for high-peak-power ultrafast lasers at 976 nm. We discuss fiber design considerations and detailed simulation results for three-level lasing performance in the YbARF, which promises >85% lasing efficiency in a single-pass pump configuration. These design concepts can be easily extended to suppress high-gain wavelengths in other rare-earth-doped (e.g., with thulium, erbium, and neodymium) fiber amplifiers or lasers.