Non-Hermitian topological systems with eigenvalues that are always real
The effect of non-Hermiticity in band topology has sparked many discussions on non-Hermitian topological physics. It has long been known that non-Hermitian Hamiltonians can exhibit real energy spectra under the condition of parity-time (PT) symmetry - commonly implemented with balanced loss and gain...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156861 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The effect of non-Hermiticity in band topology has sparked many discussions on non-Hermitian topological physics. It has long been known that non-Hermitian Hamiltonians can exhibit real energy spectra under the condition of parity-time (PT) symmetry - commonly implemented with balanced loss and gain - but only when non-Hermiticity is relatively weak. Sufficiently strong non-Hermiticity, on the other hand, will destroy the reality of energy spectra, a situation known as spontaneous PT-symmetry breaking. Here, based on nonreciprocal coupling, we show a systematic strategy to construct non-Hermitian topological systems exhibiting bulk and boundary energy spectra that are always real, regardless of weak or strong non-Hermiticity. Such nonreciprocal-coupling-based non-Hermiticity can directly drive a topological phase transition and determine the band topology, as demonstrated in a few non-Hermitian systems from one dimensional to two dimensional. Our work develops a theory that can guarantee the reality of energy spectra for non-Hermitian Hamiltonians, and offers an avenue to explore non-Hermitian topological physics. |
---|