Non-asymptotic bounds for modified tamed unadjusted Langevin algorithm in non-convex setting

We consider the problem of sampling from a target distribution $\pi_\beta$ on $\mathbb{R}^d$ with density proportional to $\theta\mapsto e^{-\beta U(\theta)}$ using explicit numerical schemes based on discretising the Langevin stochastic differential equation (SDE). In recent literature, taming has...

全面介紹

Saved in:
書目詳細資料
主要作者: Ng, Matthew Cheng En
其他作者: Ariel Neufeld
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/156899
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English