Axiomatic set theory beyond the continuum hypothesis
There exist mathematical statements that can neither be proven nor disproven, collectively referred to as independent statements. This phenomenon is fundamentally different from problems that have yet to be solved, as independent statements can never be decided to be true or false. To observe what e...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156904 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-156904 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1569042023-02-28T23:10:57Z Axiomatic set theory beyond the continuum hypothesis Neo, Chee Heng Ng Keng Meng School of Physical and Mathematical Sciences KMNg@ntu.edu.sg Science::Mathematics::Mathematical logic There exist mathematical statements that can neither be proven nor disproven, collectively referred to as independent statements. This phenomenon is fundamentally different from problems that have yet to be solved, as independent statements can never be decided to be true or false. To observe what exactly causes this would require an understanding of the underlying axiomatic system and assumptions that one is working with. It is thus a meaningful mathematical endeavour to study these statements in detail, and gain insights into what makes them independent. Of course, there are also debates as to whether such independent statements should be true or false in the first place. These arguments fall into the realm of philosophy, and considerable efforts have been made by many great minds in the past to justify both the case for and against these theorems. What we are left with at this point today are the ZFC axioms. The study of set theory and independent statements in this report will however, break free from the shackles of ZFC and look towards stronger hypotheses and extensions of our set-theoretic universe. Bachelor of Science in Mathematical Sciences 2022-04-27T06:48:50Z 2022-04-27T06:48:50Z 2022 Final Year Project (FYP) Neo, C. H. (2022). Axiomatic set theory beyond the continuum hypothesis. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156904 https://hdl.handle.net/10356/156904 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Mathematics::Mathematical logic |
spellingShingle |
Science::Mathematics::Mathematical logic Neo, Chee Heng Axiomatic set theory beyond the continuum hypothesis |
description |
There exist mathematical statements that can neither be proven nor disproven, collectively referred to as independent statements. This phenomenon is fundamentally different from problems that have yet to be solved, as independent statements can never be decided to be true or false. To observe what exactly causes this would require an understanding of the underlying axiomatic system and assumptions that one is working with. It is thus a meaningful mathematical endeavour to study these statements in detail, and gain insights into what makes them independent.
Of course, there are also debates as to whether such independent statements should be true or false in the first place. These arguments fall into the realm of philosophy, and considerable efforts have been made by many great minds in the past to justify both the case for and against these theorems. What we are left with at this point today are the ZFC axioms. The study of set theory and independent statements in this report will however, break free from the shackles of ZFC and look towards stronger hypotheses and extensions of our set-theoretic universe. |
author2 |
Ng Keng Meng |
author_facet |
Ng Keng Meng Neo, Chee Heng |
format |
Final Year Project |
author |
Neo, Chee Heng |
author_sort |
Neo, Chee Heng |
title |
Axiomatic set theory beyond the continuum hypothesis |
title_short |
Axiomatic set theory beyond the continuum hypothesis |
title_full |
Axiomatic set theory beyond the continuum hypothesis |
title_fullStr |
Axiomatic set theory beyond the continuum hypothesis |
title_full_unstemmed |
Axiomatic set theory beyond the continuum hypothesis |
title_sort |
axiomatic set theory beyond the continuum hypothesis |
publisher |
Nanyang Technological University |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/156904 |
_version_ |
1759853031736737792 |