Sparse supervised principal component analysis for survival models

Survival prediction plays a vital role in biomedical research, but the large number of patient characteristics considered as covariates raises the concern about overfitting leading to poor prediction accuracy. To address this, we propose a sparse supervised PCA method for censored Accelerated Failur...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Poh, Charissa Li Ann
مؤلفون آخرون: Xiang Liming
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/156924
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English