High-dimensional data analysis with constraints
Traditional Markowitz portfolio is very sensitive to errors in estimated input for a high dimensional dataset. This problem inspired us to connect the high dimensional portfolio selection problem to a constrained lasso problem to deal with the input uncertainty. In this paper, we developed a new alg...
Saved in:
主要作者: | Zhou, Hanxiao |
---|---|
其他作者: | Pun Chi Seng |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156929 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Information Analysis of High-Dimensional Data and Applications
由: Xin She Yang, et al.
出版: (2018) -
Large-Dimensional Factor Analysis Without Moment Constraints
由: He, Yong, et al.
出版: (2021) -
Network-based screening for ultra-high dimensional survival data subject to semi-competing risks
由: Chin, Nicholas Wei Lun
出版: (2022) -
Independence test for high dimensional data based on regularized canonical correlation coefficients
由: Yang, Yanrong, et al.
出版: (2015) -
High dimensional clustering for mixture models
由: Liu, Yiming
出版: (2020)