Lotus-root-like carbon fibers embedded with Ni-Co nanoparticles for dendrite-free lithium metal anodes

The growth of lithium (Li) dendrites and the huge volume change are the critical issues for the practical applications of Li-metal anodes. In this work, a spatial control strategy is proposed to address the above challenges using lotus-root-like Ni-Co hollow prisms@carbon fibers (NCH@CFs) as the hos...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Chen, Guan, Jun, Li, Nian Wu, Lu, Yue, Luan, Deyan, Zhang, Cai Hong, Cheng, Guang, Yu, Le, Lou, David Xiong Wen
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/156930
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The growth of lithium (Li) dendrites and the huge volume change are the critical issues for the practical applications of Li-metal anodes. In this work, a spatial control strategy is proposed to address the above challenges using lotus-root-like Ni-Co hollow prisms@carbon fibers (NCH@CFs) as the host. The homogeneously distributed bimetallic Ni-Co particles on the N-doped carbon fibers serve as nucleation sites to effectively reduce the overpotential for Li nucleation. Furthermore, the 3D conductive network can alter the electric field. More importantly, the hierarchical lotus-root-like hollow fibers provide sufficient void space to withstand the volume expansion during Li deposition. These structural features guide the uniform Li nucleation and non-dendritic growth. As a result, the NCH@CFs host enables a very stable Li metal anode with a low voltage hysteresis during repeated Li plating/stripping for 1200 h at a current density of 1 mA cm-2 .