The skyline of counterfactual explanations for machine learning decision models
Counterfactual explanations are minimum changes of a given input to alter the original prediction by a machine learning model, usually from an undesirable prediction to a desirable one. Previous works frame this problem as a constrained cost minimization, where the cost is defined as L1/L2 distance...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/156946 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |