Use of rigid cucurbit[6]uril mediating selective water transport as a potential remedy to improve the permselectivity and durability of reverse osmosis membranes

In spite of many efforts to grasp the nature of porous nanomaterials, it is hard to find research work addressing empirical evidence for selective water permeation through their channels or pores. Herein, we report the experimental proof of selective water permeation through cucurbit[6]uril (CB[6])...

全面介紹

Saved in:
書目詳細資料
Main Authors: Lee, Jaewoo, Zhou, Feng, Baek, Kangkyun, Kim, Wooram, Su, Haibin, Kim, Kimoon, Wang, Rong, Bae, Tae-Hyun
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/156977
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In spite of many efforts to grasp the nature of porous nanomaterials, it is hard to find research work addressing empirical evidence for selective water permeation through their channels or pores. Herein, we report the experimental proof of selective water permeation through cucurbit[6]uril (CB[6]) with a portal diameter of 3.9 Å along with quantum mechanics calculation results elucidating the mechanisms underlying the selective water transport. CB[6] improved the water/salt permselectivity of CB[6]-polyamide thin-film nanocomposite (CB[6]-TFN) membranes since ion passage was inhibited by a high energy barrier imposed by the CB[6]’s portals while the portals are energetically favorable from the perspective of water transport. This difference in water and salt's permeabilities stems from its carbonyl-fringed portals, which are cut out for size exclusion and negatively charged for charge repulsion. Due to the rigidity, CB[6]-TFN membranes were found to be more resistant to compaction under elevated pressures. Such unique characteristics of CB[6] allowed CB[6]-TFN membranes to outperform newly developed TFN membranes as well as commercial RO membranes.