Cardinality estimation for random stopping sets based on Poisson point processes
We construct unbiased estimators for the distribution of the number of points inside random stopping sets based on a Poisson point process. Our approach is based on moment identities for stopping sets, showing that the random count of points inside the complement S¯ of a stopping set S has a Poisson...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/157009 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We construct unbiased estimators for the distribution of the number of points inside random stopping sets based on a Poisson point process. Our approach is based on moment identities for stopping sets, showing that the random count of points inside the complement S¯ of a stopping set S has a Poisson distribution conditionally to S. The proofs do not require the use of set-indexed martingales, and our estimators have a lower variance when compared to standard sampling. Numerical simulations are presented for examples such as the convex hull and the Voronoi flower of a Poisson point process, and their complements. |
---|