Suppression of gapless edge states in interaction driven topological insulators
A topological insulator is a special class of material where the bulk of the material is gaped, exhibiting insulating properties, and the edges are gapless, exhibiting behaviours of a conductor due to one unpaired electron. This report seeks to investigate if there is any suppression of gapless edge...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/157023 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-157023 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1570232023-02-28T23:15:18Z Suppression of gapless edge states in interaction driven topological insulators Thayalan Raman Pinaki Sengupta School of Physical and Mathematical Sciences PSENGUPTA@ntu.edu.sg Science::Physics::Atomic physics::Solid state physics A topological insulator is a special class of material where the bulk of the material is gaped, exhibiting insulating properties, and the edges are gapless, exhibiting behaviours of a conductor due to one unpaired electron. This report seeks to investigate if there is any suppression of gapless edge states when lattice interactions are considered. These conditions were then simulated at ground state in an open-boundary, one-dimensional extended Peierls-Hubbard model at half-filling. A numerical method by the name of stochastic series expansion, a branch of Quantum Monte Carlo methods, is used to run the simulations for finite length models. The model considers electron-electron interactions and a finite range of electron-phonon coupling parameters. Firstly, spin stiffness is used as an indicator to observe the transition to Peierls state at ground temperature for closed boundary conditions at a critical phonon coupling value. This provides details about the critical phonon coupling values. Choosing an appropriate phonon coupling value based on the previous details, a comparison between odd length and even length chains were done at open boundary conditions. It was found that there is always suppression of gapless edge states for both even and odd length chain of sites. Bachelor of Science in Applied Physics 2022-05-06T06:10:53Z 2022-05-06T06:10:53Z 2022 Final Year Project (FYP) Thayalan Raman (2022). Suppression of gapless edge states in interaction driven topological insulators. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157023 https://hdl.handle.net/10356/157023 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Physics::Atomic physics::Solid state physics |
spellingShingle |
Science::Physics::Atomic physics::Solid state physics Thayalan Raman Suppression of gapless edge states in interaction driven topological insulators |
description |
A topological insulator is a special class of material where the bulk of the material is gaped, exhibiting insulating properties, and the edges are gapless, exhibiting behaviours of a conductor due to one unpaired electron. This report seeks to investigate if there is any suppression of gapless edge states when lattice interactions are considered. These conditions were then simulated at ground state in an open-boundary, one-dimensional extended Peierls-Hubbard model at half-filling. A numerical method by the name of stochastic series expansion, a branch of Quantum Monte Carlo methods, is used to run the simulations for finite length models. The model considers electron-electron interactions and a finite range of electron-phonon coupling parameters. Firstly, spin stiffness is used as an indicator to observe the transition to Peierls state at ground temperature for closed boundary conditions at a critical phonon coupling value. This provides details about the critical phonon coupling values. Choosing an appropriate phonon coupling value based on the previous details, a comparison between odd length and even length chains were done at open boundary conditions. It was found that there is always suppression of gapless edge states for both even and odd length chain of sites. |
author2 |
Pinaki Sengupta |
author_facet |
Pinaki Sengupta Thayalan Raman |
format |
Final Year Project |
author |
Thayalan Raman |
author_sort |
Thayalan Raman |
title |
Suppression of gapless edge states in interaction driven topological insulators |
title_short |
Suppression of gapless edge states in interaction driven topological insulators |
title_full |
Suppression of gapless edge states in interaction driven topological insulators |
title_fullStr |
Suppression of gapless edge states in interaction driven topological insulators |
title_full_unstemmed |
Suppression of gapless edge states in interaction driven topological insulators |
title_sort |
suppression of gapless edge states in interaction driven topological insulators |
publisher |
Nanyang Technological University |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/157023 |
_version_ |
1759855783273562112 |